skip to main content


Title: The Direct-method Oxygen Abundance of Typical Dwarf Galaxies at Cosmic High Noon∗
Abstract

We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲z≲ 2.6 (zmean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass oflog(M*/M)med=8.290.43+0.51and a median star formation rate ofSFRHαmed=2.251.26+2.15Myr1. We measure the faint electron-temperature-sensitive [Oiii]λ4363 emission line at 2.5σ(4.1σ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of12+log(O/H)direct=7.880.22+0.25(0.150.06+0.12Z). We investigate the applicability at highzof locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM*, our composite is well represented by thez∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories(log(M*/M)med=8.920.22+0.31), we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM*and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii]λ3729/[Oii]λ3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density ofne=10+215cm3(ne=10+74cm3) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz∼ 2.

 
more » « less
NSF-PAR ID:
10413056
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 108
Size(s):
["Article No. 108"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity ofvsys=31.51.2+1.3kms1, and velocity dispersionσv=6.10.9+1.2kms1. Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of[Fe/H]=2.870.07+0.08, and resolve a dispersion ofσ[Fe/H]=0.20 ± 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metal-poor galaxies discovered thus far. Eri IV also has a somewhat unusual right-skewed metallicity distribution. For Cen I, we find a velocityvsys= 44.9 ± 0.8 km s−1, and velocity dispersionσv=4.20.5+0.6kms1. We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = −2.57 ± 0.08, and metallicity dispersionσ[Fe/H]=0.380.05+0.07. We calculate the systemic proper motion, orbit, and the astrophysical J-factor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are dark-matter-dominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, right-skewed metallicity distribution, and high J-factor make Eri IV an especially interesting candidate for further follow-up.

     
    more » « less
  2. Abstract

    We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are9.35.4+4.6and4.22.0+1.9Mpc2(Kkms1)1, respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength (U¯). Among them,U¯, ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity,U¯, and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relationsαCO(21)Σ0.5andαCO(10)Σ0.2. The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.

     
    more » « less
  3. Abstract

    We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined asHI103ΩHIbHI+fμ2, where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We findHI=1.510.97+3.60for LRGs (z= 0.84),HI=6.763.79+9.04for ELGs (z= 0.96), andHI=1.680.67+1.10for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far.

     
    more » « less
  4. Abstract

    We present measurements of the rest-frame UV spectral slope,β, for a sample of 36 faint star-forming galaxies atz∼ 9–16 discovered in one of the deepest JWST NIRCam surveys to date, the Next Generation Deep Extragalactic Exploratory Public Survey. We use robust photometric measurements for UV-faint galaxies (down toMUV∼ −16), originally published in Leung et al., and measure values of the UV spectral slope via photometric power-law fitting to both the observed photometry and stellar population models obtained through spectral energy distribution (SED) fitting withBagpipes. We obtain a median and 68% confidence interval forβfrom photometric power-law fitting ofβPL=2.70.5+0.5and from SED fitting,βSED=2.30.1+0.2for the full sample. We show that when only two to three photometric detections are available, SED fitting has a lower scatter and reduced biases than photometric power-law fitting. We quantify this bias and find that after correction the medianβSED,corr=2.50.2+0.2. We measure physical properties for our galaxies withBagpipesand find that our faint (MUV=18.10.9+0.7) sample is low in mass (log[M*/M]=7.70.5+0.5), fairly dust-poor (Av=0.10.1+0.2mag), and modestly young (log[age]=7.80.8+0.2yr) with a median star formation rate oflog(SFR)=0.30.4+0.4Myr1. We find no strong evidence for ultrablue UV spectral slopes (β∼ −3) within our sample, as would be expected for exotically metal-poor (Z/Z< 10−3) stellar populations with very high Lyman continuum escape fractions. Our observations are consistent with model predictions that galaxies of these stellar masses atz∼ 9–16 should have only modestly low metallicities (Z/Z∼ 0.1–0.2).

     
    more » « less
  5. Abstract

    We present thez≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz≈ 5.7–6.2, with −28 ≲M1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez≈ 6 QLF over −28 ≲M1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z) ∝ 10k(z−6);k= −0.7), we use a maximum likelihood method to model our data. We find a break magnitude ofM*=26.380.60+0.79mag, a faint-end slope ofα=1.700.19+0.29, and a steep bright-end slope ofβ=3.841.21+0.63. Based on our new QLF model, we determine the quasar comoving spatial density atz≈ 6 to ben(M1450<26)=1.160.12+0.13cGpc3. In comparison with the literature, we find the quasar density to evolve with a constant value ofk≈ −0.7, fromz≈ 7 toz≈ 4. Additionally, we derive an ionizing emissivity ofϵ912(z=6)=7.231.02+1.65×1022ergs1Hz1cMpc3, based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz≈ 6, we calculate an Hiphotoionizing rate of ΓH I(z= 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization.

     
    more » « less