skip to main content


Title: A variable active galactic nucleus at z  = 2.06 triply-imaged by the galaxy cluster MACS J0035.4−2015
ABSTRACT

We report the discovery of a triply imaged active galactic nucleus (AGN), lensed by the galaxy cluster MACS J0035.4−2015 (zd = 0.352). The object is detected in Hubble Space Telescope imaging taken for the RELICS program. It appears to have a quasi-stellar nucleus consistent with a point-source, with a de-magnified radius of re ≲ 100 pc. The object is spectroscopically confirmed to be an AGN at zspec = 2.063 ± 0.005 showing broad rest-frame UV emission lines, and detected in both X-ray observations with Chandra and in ALCS ALMA band 6 (1.2 mm) imaging. It has a relatively faint rest-frame UV luminosity for a quasar-like object, MUV, 1450 = −19.7 ± 0.2. The object adds to just a few quasars or other X-ray sources known to be multiply lensed by a galaxy cluster. Some diffuse emission from the host galaxy is faintly seen around the nucleus, and there is a faint object nearby sharing the same multiple-imaging symmetry and geometric redshift, possibly an interacting galaxy or a star-forming knot in the host. We present an accompanying lens model, calculate the magnifications and time delays, and infer the physical properties of the source. We find the rest-frame UV continuum and emission lines to be dominated by the AGN, and the optical emission to be dominated by the host galaxy of modest stellar mass $M_{\star }\simeq 10^{9.2}\, \mathrm{M}_{\odot }$ . We also observe some variation in the AGN emission with time, which may suggest that the AGN used to be more active. This object adds a low-redshift counterpart to several relatively faint AGN recently uncovered at high redshifts with HST and JWST.

 
more » « less
NSF-PAR ID:
10413121
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
522
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5142-5151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Ly α and ultraviolet (UV)-continuum luminosity functions (LFs) of galaxies and active galactic nuclei (AGNs) at z = 2.0–3.5 determined by the untargeted optical spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in 11.4 deg 2 of fiber spectra sky coverage, obtaining 18,320 galaxies spectroscopically identified with Ly α emission, 2126 of which host type 1 AGNs showing broad (FWHM > 1000 km s −1 ) Ly α emission lines. We derive the Ly α (UV) LF over 2 orders of magnitude covering bright galaxies and AGNs in log L Ly α / [ erg s − 1 ] = 43.3 – 45.5 (−27 < M UV < −20) by the 1/ V max estimator. Our results reveal that the bright-end hump of the Ly α LF is composed of type 1 AGNs. In conjunction with previous spectroscopic results at the faint end, we measure a slope of the best-fit Schechter function to be α Sch = − 1.70 − 0.14 + 0.13 , which indicates that α Sch steepens from z = 2–3 toward high redshift. Our UV LF agrees well with previous AGN UV LFs and extends to faint-AGN and bright-galaxy regimes. The number fraction of Ly α -emitting objects ( X LAE ) increases from M UV * ∼ − 21 to bright magnitude due to the contribution of type 1 AGNs, while previous studies claim that X Ly α decreases from faint magnitudes to M UV * , suggesting a valley in the X Ly α –magnitude relation at M UV * . Comparing our UV LF of type 1 AGNs at z = 2–3 with those at z = 0, we find that the number density of faint ( M UV > −21) type 1 AGNs increases from z ∼ 2 to 0, as opposed to the evolution of bright ( M UV < −21) type 1 AGNs, suggesting AGN downsizing in the rest-frame UV luminosity. 
    more » « less
  2. ABSTRACT

    Nearly a decade ago, we began to see indications that reionization-era galaxies power hard radiation fields rarely seen at lower redshift. Most striking were detections of nebular C iv emission in what appeared to be typical low-mass galaxies, requiring an ample supply of 48 eV photons to triply ionize carbon. We have obtained deep JWST/NIRSpec R = 1000 spectroscopy of the two z > 6 C iv-emitting galaxies known prior to JWST. Here, we present a rest-UV to optical spectrum of one of these two systems, the multiply-imaged z = 6.1 lensed galaxy RXCJ2248-ID. NIRCam imaging reveals two compact (<22 pc) clumps separated by 220 pc, with one comprising a dense concentration of massive stars (>10 400 M⊙ yr−1 kpc−2) formed in a recent burst. We stack spectra of 3 images of the galaxy (J = 24.8–25.9), yielding a very deep spectrum providing a high-S/N template of strong emission line sources at z > 6. The spectrum reveals narrow high-ionization lines (He ii, C iv, N iv]) with line ratios consistent with powering by massive stars. The rest-optical spectrum is dominated by very strong emission lines ([O iii] EW = 2800 Å), albeit with weak emission from low-ionization transitions ([O iii]/[O ii] = 184). The electron density is found to be very high (6.4–31.0 × 104 cm−3) based on three UV transitions. The ionized gas is metal poor ($12+\log (\rm O/H)=7.43^{+0.17}_{-0.09}$), yet highly enriched in nitrogen ($\log (\rm N/O)=-0.39^{+0.11}_{-0.10}$). The spectrum appears broadly similar to that of GNz11 at z = 10.6, without showing the same AGN signatures. We suggest that the hard radiation field and rapid nitrogen enrichment may be a short-lived phase that many z > 6 galaxies go through as they undergo strong bursts of star formation. We comment on the potential link of such spectra to globular cluster formation.

     
    more » « less
  3. ABSTRACT

    We report the discovery of a double-peaked Lyman-α (Ly α) emitter (LAE) at z = 3.2177 ± 0.0001 in VLT/MUSE data. The galaxy is strongly lensed by the galaxy cluster RXC J0018.5+1626 recently observed in the RELICS survey, and the double-peaked Ly α emission is clearly detected in the two counter images in the MUSE field of view. We measure a relatively high Ly α rest-frame equivalent width (EW) of EWLy α, 0 = (63 ± 2) Å. Additional spectroscopy with Gemini/GNIRS in the near-infrared (NIR) allows us to measure the H β, [O iii] λ4959 Å, and [O iii] λ5007 Å emission lines, which show moderate rest-frame EWs of the order of a few ∼10–100 Å, an [O iii] λ5007 Å/H β ratio of 4.8 ± 0.7, and a lower limit on the [O iii]/[O ii] ratio of >9.3. The galaxy has very blue UV-continuum slopes of βFUV = −2.23 ± 0.06 and βNUV = −3.0 ± 0.2, and is magnified by factors μ ∼ 7–10 in each of the two images, thus enabling a view into a low-mass ($M_{\star }\simeq 10^{7.5}\, \mathrm{M}_{\odot }$) high-redshift galaxy analogue. Notably, the blue peak of the Ly α profile is significantly stronger than the red peak, which suggests an inflow of matter and possibly very low H i column densities in its circumgalactic gas. To the best of our knowledge, this is the first detection of such a Ly α profile. Combined with the high lensing magnification and image multiplicity, these properties make this galaxy a prime candidate for follow-up observations to search for LyC emission and constrain the LyC photon escape fraction.

     
    more » « less
  4. ABSTRACT

    We report the identification of radio (0.144–3 GHz) and mid-, far-infrared, and sub-mm (24–850μm) emission at the position of one of 41 UV-bright ($\mathrm{M_{\mathrm{UV}}}^{ }\lesssim -21.25$) z ≃ 6.6–6.9 Lyman-break galaxy candidates in the 1.5 deg2 COSMOS field. This source, COS-87259, exhibits a sharp flux discontinuity (factor >3) between two narrow/intermediate bands at 9450 and 9700 Å and is undetected in all nine bands blueward of 9600 Å, as expected from a Lyman alpha break at z ≃ 6.8. The full multiwavelength (X-ray through radio) data of COS-87529 can be self-consistently explained by a very massive (M* = 1010.8 M⊙) and extremely red (rest-UV slope β = −0.59) z ≃ 6.8 galaxy with hyperluminous infrared emission (LIR = 1013.6 L⊙) powered by both an intense burst of highly obscured star formation (SFR ≈ 1800 M⊙ yr−1) and an obscured ($\tau _{_{\mathrm{9.7\mu m}}} = 7.7\pm 2.5$) radio-loud (L1.4 GHz ≈ 1025.4 W Hz−1) active galactic nucleus (AGN). The radio emission is compact (1.04 ± 0.12 arcsec) and exhibits an ultra-steep spectrum between 1.32 and 3 GHz ($\alpha =-1.57^{+0.22}_{-0.21}$) that flattens at lower frequencies ($\alpha = -0.86^{+0.22}_{-0.16}$ between 0.144 and 1.32 GHz), consistent with known z > 4 radio galaxies. We also demonstrate that COS-87259 may reside in a significant (11×) galaxy overdensity, as common for systems hosting radio-loud AGN. While we find that low-redshift solutions to the optical + near-infrared data are not preferred, a spectroscopic redshift will ultimately be required to establish the true nature of COS-87259 beyond any doubt. If confirmed to lie at z ≃ 6.8, the properties of COS-87259 would be consistent with a picture wherein AGN and highly obscured star formation activity are fairly common among very massive (M* > 1010 M⊙) reionization-era galaxies.

     
    more » « less
  5. Abstract

    We report the discovery of an accreting supermassive black hole atz= 8.679. This galaxy, denoted here as CEERS_1019, was previously discovered as a Lyα-break galaxy by Hubble with a Lyαredshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we have observed this source with JWST/NIRSpec, MIRI, NIRCam, and NIRCam/WFSS and uncovered a plethora of emission lines. The Hβline is best fit by a narrow plus a broad component, where the latter is measured at 2.5σwith an FWHM ∼1200 km s−1. We conclude this originates in the broadline region of an active galactic nucleus (AGN). This is supported by the presence of weak high-ionization lines (N V, N IV], and C III]), as well as a spatial point-source component. The implied mass of the black hole (BH) is log (MBH/M) = 6.95 ± 0.37, and we estimate that it is accreting at 1.2 ± 0.5 times the Eddington limit. The 1–8μm photometric spectral energy distribution shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M∼9.5) and highly star-forming (star formation rate, or SFR ∼ 30 Myr−1; log sSFR ∼ − 7.9 yr−1). The line ratios show that the gas is metal-poor (Z/Z∼ 0.1), dense (ne∼ 103cm−3), and highly ionized (logU∼ − 2.1). We use this present highest-redshift AGN discovery to place constraints on BH seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from very massive BH seeds is required to form this object.

     
    more » « less