skip to main content


Title: A Flat-spectrum Radio Transient at 122 Mpc Consistent with an Emerging Pulsar Wind Nebula
Abstract

We report the discovery and follow-up observations of VT 1137–0337, an unusual radio transient found in our systematic search for extragalactic explosions in the Very Large Array Sky Survey. It is located in the brightest region of a dwarf starburst galaxy at a luminosity distance of 121.6 Mpc. Its 3 GHz luminosity is comparable to luminous radio supernovae associated with dense circumstellar interaction and relativistic outflows. However, its broadband radio spectrum—proportional toν−0.35over a range of ≳10× in frequency and fading at a rate of 5% yr–1—cannot be directly explained by the shock of a stellar explosion. Jets launched by various classes of accreting black holes also struggle to account for VT 1137–0337's combination of observational properties. Instead, we propose that VT 1137–0337 is a decades-old pulsar wind nebula that has recently emerged from within the free–free opacity of its surrounding supernova ejecta. If the nebula is powered by spin-down, the central neutron star should have a surface dipole field of ∼1013–1014G and a present-day spin period of ∼10–100 ms. Alternatively, the nebula may be powered by the release of magnetic energy from a magnetar. Magnetar nebulae have been proposed to explain the persistent radio sources associated with the repeating fast radio bursts FRB 121102 and FRB 190520B. These FRB persistent sources have not previously been observed as transients but do bear a striking resemblance to VT 1137–0337 in their radio luminosity, spectral index, and host galaxy properties.

 
more » « less
NSF-PAR ID:
10413630
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 119
Size(s):
Article No. 119
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present high-resolution 1.5–6 GHz Karl G. Jansky Very Large Array and Hubble Space Telescope (HST) optical and infrared observations of the extremely active repeating fast radio burst (FRB) FRB 20201124A and its barred spiral host galaxy. We constrain the location and morphology of star formation in the host and search for a persistent radio source (PRS) coincident with FRB 20201124A. We resolve the morphology of the radio emission across all frequency bands and measure a star formation rate (SFR) ≈ 8.9Myr−1, approximately ≈2.5–6 times larger than optically inferred SFRs, demonstrating dust-obscured star formation throughout the host. Compared to a sample of all known FRB hosts with radio emission, the host of FRB 20201124A has the most significantly obscured star formation. While HST observations show the FRB to be offset from the bar or spiral arms, the radio emission extends to the FRB location. We propose that the FRB progenitor could have formed in situ (e.g., a magnetar born from a massive star explosion). It is still plausible, although less likely, that the progenitor of FRB 20201124A migrated from the central bar of the host. We further place a limit on the luminosity of a putative PRS at the FRB position ofL6.0GHz≲ 1.8 ×1027erg s−1Hz−1, among the deepest PRS luminosity limits to date. However, this limit is still broadly consistent with both magnetar nebulae and hypernebulae models assuming a constant energy injection rate of the magnetar and an age of ≳105yr in each model, respectively.

     
    more » « less
  2. Abstract

    The first fast radio burst (FRB) to be precisely localized was associated with a luminous persistent radio source (PRS). Recently, a second FRB/PRS association was discovered for another repeating source of FRBs. However, it is not clear what makes FRBs or PRS or how they are related. We compile FRB and PRS properties to consider the population of FRB/PRS sources. We suggest a practical definition for PRS as FRB associations with luminosity greater than 1029erg s−1Hz−1that are not attributed to star formation activity in the host galaxy. We model the probability distribution of the fraction of FRBs with PRS for repeaters and nonrepeaters, showing there is not yet evidence for repeaters to be preferentially associated with PRS. We discuss how FRB/PRS sources may be distinguished by the combination of active repetition and an excess dispersion measure local to the FRB environment. We use CHIME/FRB event statistics to bound the mean per-source repetition rate of FRBs to be between 25 and 440 yr−1. We use this to provide a bound on the density of FRB-emitting sources in the local universe of between 2.2 × 102and 5.2 × 104Gpc−3assuming a pulsar-like beamwidth for FRB emission. This density implies that PRS may comprise as much as 1% of compact, luminous radio sources detected in the local universe. The cosmic density and phenomenology of PRS are similar to that of the newly discovered, off-nuclear “wandering” active galactic nuclei (AGN). We argue that it is likely that some PRS have already been detected and misidentified as AGN.

     
    more » « less
  3. ABSTRACT

    The physical properties of fast radio burst (FRB) host galaxies provide important clues towards the nature of FRB sources. The 16 FRB hosts identified thus far span three orders of magnitude in mass and specific star formation rate, implicating a ubiquitously occurring progenitor object. FRBs localized with ∼arcsecond accuracy also enable effective searches for associated multiwavelength and multi-time-scale counterparts, such as the persistent radio source associated with FRB 20121102A. Here we present a localization of the repeating source FRB 20201124A, and its association with a host galaxy (SDSS J050803.48+260338.0, z = 0.098) and persistent radio source. The galaxy is massive (${\sim}3\times 10^{10}\, \text{M}_{\odot }$), star-forming (few solar masses per year), and dusty. Very Large Array and Very Long Baseline Array observations of the persistent radio source measure a luminosity of 1.2 × 1029 erg s−1 Hz−1, and show that is extended on scales ≳50 mas. We associate this radio emission with the ongoing star formation activity in SDSS J050803.48+260338.0. Deeper, high-resolution optical observations are required to better utilize the milliarcsecond-scale localization of FRB 20201124A and determine the origin of the large dispersion measure (150–220 pc cm−3) contributed by the host. SDSS J050803.48+260338.0 is an order of magnitude more massive than any galaxy or stellar system previously associated with a repeating FRB source, but is comparable to the hosts of so far non-repeating FRBs, further building the link between the two apparent populations.

     
    more » « less
  4. ABSTRACT The analogy of the host galaxy of the repeating fast radio burst (FRB) source FRB 121102 and those of long gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe) has led to the suggestion that young magnetars born in GRBs and SLSNe could be the central engine of repeating FRBs. We test such a hypothesis by performing dedicated observations of the remnants of six GRBs with evidence of having a magnetar central engine using the Arecibo telescope and the Robert C. Byrd Green Bank Telescope (GBT). A total of ∼20 h of observations of these sources did not detect any FRB from these remnants. Under the assumptions that all these GRBs left behind a long-lived magnetar and that the bursting rate of FRB 121102 is typical for a magnetar FRB engine, we estimate a non-detection probability of 8.9 × 10−6. Even though these non-detections cannot exclude the young magnetar model of FRBs, we place constraints on the burst rate and luminosity function of FRBs from these GRB targets. 
    more » « less
  5. Abstract

    We present the discovery of an as yet nonrepeating fast radio burst (FRB), FRB 20210117A, with the Australian Square Kilometre Array Pathfinder (ASKAP), as a part of the Commensal Real-time ASKAP Fast Transients Survey. The subarcsecond localization of the burst led to the identification of its host galaxy atz= 0.214(1). This redshift is much lower than what would be expected for a source dispersion measure (DM) of 729 pc cm−3, given typical contributions from the intergalactic medium and the host galaxy. Optical observations reveal the host to be a dwarf galaxy with little ongoing star formation—very different to the dwarf host galaxies of the known repeating FRBs 20121102A and 20190520B. We find an excess DM contribution from the host and attribute it to the FRB’s local environment. We do not find any radio emission from the FRB site or host galaxy. The low magnetized environment and the lack of a persistent radio source indicate that the FRB source is older than those found in other dwarf host galaxies, establishing the diversity of FRB sources in dwarf galaxy environments. We find our observations to be fully consistent with the “hypernebula” model, where the FRB is powered by an accretion jet from a hyperaccreting black hole. Finally, our high time resolution analysis reveals burst characteristics similar to those seen in repeating FRBs. We encourage follow-up observations of FRB 20210117A to establish any repeating nature.

     
    more » « less