skip to main content


Title: Increased dominance of heat-tolerant symbionts creates resilient coral reefs in near-term ocean warming
Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves. Higher heat resistance in later bleaching events was detected in the dominant framework-building genus, Pocillopora, while other coral taxa exhibited similar susceptibility across events. Genetic analyses of Pocillopora spp . colonies and their algal symbionts (2014 to 2016) revealed that one of two Pocillopora lineages present in the region ( Pocillopora “ type 1”) increased its association with thermotolerant algal symbionts ( Durusdinium glynnii ) during the 2015 to 2016 heat stress event. This lineage experienced lower bleaching and mortality compared with Pocillopora “type 3”, which did not acquire D. glynnii . Under projected thermal stress, ETP reefs may be able to preserve high coral cover through the 2060s or later, mainly composed of Pocillopora colonies that associate with D. glynnii . However, although the low-diversity, high-cover reefs of the ETP could illustrate a potential functional state for some future reefs, this state may only be temporary unless global greenhouse gas emissions and resultant global warming are curtailed.  more » « less
Award ID(s):
1946412
NSF-PAR ID:
10413711
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
8
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coral bleaching and mortality can show significant spatial and taxonomic heterogeneity at local scales, highlighting the need to understand the fine-scale drivers and impacts of thermal stress. In this study, we used structure-from-motion photogrammetry to track coral bleaching, mortality, and changes in community composition during the 2019 marine heatwave in Kāneʻohe Bay, Hawaiʻi. We surveyed 30 shallow reef patches every 3 weeks for the duration of the bleaching event (August-December) and one year after, resulting in a total of 210 large-area, high-resolution photomosaics that enabled us to follow the fate of thousands of coral colonies through time. We also measured environmental variables such as temperature, sedimentation, depth, and wave velocity at each of these sites, and extracted estimates of habitat complexity (rugosity R and fractal dimension D) from digital elevation models to better understand their effects on patterns of bleaching and mortality. We found that up to 80% of corals experienced moderate to severe bleaching in this period, with peak bleaching occurring in October when heat stress (Degree Heating Weeks) reached its maximum. Mortality continued to accumulate as bleaching levels dropped, driving large declines in more heat-susceptible species (77% loss of Pocillopora cover) and moderate declines in heat-tolerant species (19% and 23% for Porites compressa and Montipora capitata , respectively). Declines in live coral were accompanied by a rapid increase in algal cover across the survey sites. Spatial differences in bleaching were significantly linked to habitat complexity and coral species composition, with reefs that were dominated by Pocillopora experiencing the most severe bleaching. Mortality was also influenced by species composition, fractal dimension, and site-level differences in thermal stress. Our results show that spatial heterogeneity in the impacts of bleaching are driven by a mix of environmental variation, habitat complexity, and differences in assemblage composition. 
    more » « less
  2. Abstract

    Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back‐to‐back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef‐building coralOrbicella faveolata. Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRADand profiled for algal symbiont abundance and type.O. faveolataat the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerantDurusdinium trenchii(formerlySymbiondinium trenchii) was the dominant endosymbiont type region‐wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated byD. trenchii. 2bRADhost genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion ofD. trenchiiwas attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably,D. trenchiiwas rarely dominant inO. faveolatafrom the Florida Keys in previous studies, even during bleaching. The region‐wide high abundance ofD. trenchiiwas likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys,O. faveolatawas most abundant, had the highest bleaching resistance, and contained the most corals dominated byD. trenchii, illustrating a causal link between heat tolerance and ecosystem resilience with global change.

     
    more » « less
  3. Abstract

    Global warming is causing an unprecedented loss of species and habitats worldwide. This is particularly apparent for tropical coral reefs, with an increasing number of reefs experiencing mass bleaching and mortality on an annual basis. As such, there is a growing need for a standardized experimental approach to rapidly assess the thermal limits of corals and predict the survival of coral species across reefs and regions. Using a portable experimental system, the Coral Bleaching Automated Stress System (CBASS), we conducted standardized 18 h acute thermal stress assays to quantitively determine the upper thermal limits of four coral species across the length of the Red Sea coastline, from the Gulf of Aqaba (GoA) to Djibouti (~ 2100 km). We measured dark-acclimated photosynthetic efficiency (Fv/Fm), algal symbiont density, chlorophyll a, and visual bleaching intensity following heat stress.Fv/Fmwas the most precise response variable assessed, advancing theFv/Fmeffective dose 50 (ED50, i.e., the temperature at which 50% of the initialFv/Fmis measured) as an empirically derived proxy for thermal tolerance. ED50 thermal thresholds from the central/southern Red Sea and Djibouti populations were consistently higher forAcropora hemprichii, Pocillopora verrucosa,andStylophora pistillata(0.1–1.8 °C above GoA corals, respectively), in line with prevailing warmer maximum monthly means (MMMs), though were lower than GoA corals relative to site MMMs (1.5–3.0 °C).P. verrucosahad the lowest thresholds overall. Despite coming from the hottest site, thresholds were lowest forPorites lobatain the southern Red Sea, suggesting long-term physiological damage or ongoing recovery from a severe, prior bleaching event. Altogether, the CBASS resolved historical, taxonomic, and possibly recent environmental drivers of variation in coral thermal thresholds, highlighting the potential for a standardized, short-term thermal assay as a universal approach for assessing ecological and evolutionary variation in the upper thermal limits of corals.

     
    more » « less
  4. Abstract

    Global warming is resulting in unprecedented levels of coral mortality due to mass bleaching events and, more recently, marine heatwaves, where rapid increases in seawater temperature cause mortality within days. Here, we compare the response of a ubiquitous scleractinian coral,Stylophora pistillata, from the northern Red Sea to acute (7 h) and chronic (7–11 d) thermal stress events that include temperature treatments of 27°C (i.e., the local maximum monthly mean), 29.5°C, 32°C, and 34.5°C, and assess recovery of the corals following exposure. Overall,S. pistillataexhibited remarkably similar responses to acute and chronic thermal stress, responding primarily to the temperature treatment rather than duration or heating rate. Additionally, corals displayed an exceptionally high thermal tolerance, maintaining their physiological performance and suffering little to no loss of algal symbionts or chlorophyllaup to 32°C, before the host suffered from rapid tissue necrosis and mortality at 34.5°C. While there was some variability in physiological response metrics, photosynthetic efficiency measurements (i.e., maximum quantum yieldFv/Fm) accurately reflected the overall physiological response patterns, with these measurements used to produce theFv/Fmeffective dose (ED50) metric as a proxy for the thermal tolerance of corals. This approach produced similar ED50values for the acute and chronic experiments (34.47°C vs. 33.81°C), highlighting the potential for acute thermal assays with measurements ofFv/Fmas a systematic and standardized approach to quantitively compare the upper thermal limits of reef‐building corals using a portable experimental system.

     
    more » « less
  5. Abstract

    The prevalence of coral bleaching due to thermal stress has been increasing on coral reefs worldwide. While many studies have documented how corals respond to warming, fewer have focused on benthic community responses over longer time periods or on the response of non-coral taxa (e.g., crustose coralline algae, macroalgae, or turf). Here, we quantify spatial and temporal changes in benthic community composition over a decade using image analysis of permanent photoquadrats on Palmyra Atoll in the central Pacific Ocean. Eighty permanent plots were photographed annually between 2009 and 2018 on both the wave-exposed fore reef (FR, 10 m depth,n = 4 sites) and the wave-sheltered reef terrace (RT, 5 m depth,n = 4 sites) habitats. The El Niño events of 2009–2010 and 2015–2016 resulted in acute thermal stress and coral bleaching was observed at both reef habitats during these events. Across 10 yr and two bleaching events, the benthic community structure on Palmyra shows evidence of long-term stability. Communities on the RT exhibited minimal change in percent cover of the dominant functional groups, while the FR had greater variability and minor declines in hard coral cover. There was also spatial variation in the trajectory of each site through time. Coral cover decreased at some sites 1 yr following both bleaching events and was replaced by different algal groups depending on the site, yet returned to pre-bleaching levels within 2 yr. Overall, our data reveal the resilience of calcifier-dominated coral reef communities on Palmyra Atoll that have persisted over the last decade despite two bleaching events, demonstrating the capacity for these reefs to recover from and/or withstand disturbances in the absence of local stressors.

     
    more » « less