The ability to learn new information and behaviors is a vital component of survival in most animal species. This learning can occur via direct experience or through observation of another individual (i.e., social learning). While research focused on understanding the neural mechanisms of direct learning is prevalent, less work has aimed at understanding the brain circuitry mediating the acquisition and recall of socially acquired information. We aimed to further elucidate the mechanisms underlying recall of socially acquired information by having rats sequentially recall a socially transmitted food preference (STFP) and a fear association via fear conditioning by-proxy (FCbP). Brain tissue was processed for mRNA expression of the immediate early gene (IEG) Arc, which reliably expresses in the cell nucleus following transcription before migrating to the cytoplasm over the next 25 minutes. Given this timeframe, we were able to identify whether Arc transcription was triggered by STFP recall, FCbP recall, or following recall of both memories. Surprisingly – and contrary to past research examining expression of other IEGs following STFP or FCbP recall separately – we found no differences in any of the Arc expression measures across a number of prefrontal regions and the vCA3 of the hippocampus between controls, demonstrators, and observers, though we did detect an overall effect of sex in a number of regions. We theorize that these results may indicate that relatively little Arc-dependent neural restructuring is taking place in the prefrontal cortices following recall of a recently socially acquired information or directly acquired fear associations in these areas. 
                        more » 
                        « less   
                    
                            
                            Patterns of Arc mRNA expression in the rat brain following dual recall of fear- and reward-based socially acquired information
                        
                    
    
            Abstract Learning can occur via direct experience or through observation of another individual (i.e., social learning). While research focused on understanding the neural mechanisms of direct learning is prevalent, less work has examined the brain circuitry mediating the acquisition and recall of socially acquired information. Here, we aimed to further elucidate the mechanisms underlying recall of socially acquired information by having male and female rats sequentially recall a socially transmitted food preference (STFP) and a fear association via fear conditioning by-proxy (FCbP). Brain tissue was processed for mRNA expression of the immediate early gene (IEG) Arc , which expresses in the nucleus following transcription before migrating to the cytoplasm over the next 25 min. Given this timeframe, we could identify whether Arc transcription was triggered by STFP recall, FCbP recall, or both. Contrary to past research, we found no differences in any Arc expression measures across a number of prefrontal regions and the ventral CA3 of the hippocampus between controls, demonstrators, and observers. We theorize that these results may indicate that relatively little Arc- dependent neural restructuring is taking place in the prefrontal cortices and ventral CA3 following recall of recently socially acquired information or directly acquired fear associations in these areas. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10413722
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations.more » « less
- 
            According to a classical view of face perception (Bruce and Young, 1986; Haxby et al., 2000), face identity and facial expression recognition are performed by separate neural substrates (ventral and lateral temporal face-selective regions, respectively). However, recent studies challenge this view, showing that expression valence can also be decoded from ventral regions (Skerry and Saxe, 2014; Li et al., 2019), and identity from lateral regions (Anzellotti and Caramazza, 2017). These findings could be reconciled with the classical view if regions specialized for one task (either identity or expression) contain a small amount of information for the other task (that enables above-chance decoding). In this case, we would expect representations in lateral regions to be more similar to representations in deep convolutional neural networks (DCNNs) trained to recognize facial expression than to representations in DCNNs trained to recognize face identity (the converse should hold for ventral regions). We tested this hypothesis by analyzing neural responses to faces varying in identity and expression. Representational dissimilarity matrices (RDMs) computed from human intracranial recordings (n= 11 adults; 7 females) were compared with RDMs from DCNNs trained to label either identity or expression. We found that RDMs from DCNNs trained to recognize identity correlated with intracranial recordings more strongly in all regions tested—even in regions classically hypothesized to be specialized for expression. These results deviate from the classical view, suggesting that face-selective ventral and lateral regions contribute to the representation of both identity and expression. SIGNIFICANCE STATEMENTPrevious work proposed that separate brain regions are specialized for the recognition of face identity and facial expression. However, identity and expression recognition mechanisms might share common brain regions instead. We tested these alternatives using deep neural networks and intracranial recordings from face-selective brain regions. Deep neural networks trained to recognize identity and networks trained to recognize expression learned representations that correlate with neural recordings. Identity-trained representations correlated with intracranial recordings more strongly in all regions tested, including regions hypothesized to be expression specialized in the classical hypothesis. These findings support the view that identity and expression recognition rely on common brain regions. This discovery may require reevaluation of the roles that the ventral and lateral neural pathways play in processing socially relevant stimuli.more » « less
- 
            Abstract Learning to anticipate potentially dangerous contexts is an adaptive behavioral response to coping with stressors. An animal’s stress coping style (e.g. proactive–reactive axis) is known to influence how it encodes salient events. However, the neural and molecular mechanisms underlying these stress coping style differences in learning are unknown. Further, while a number of neuroplasticity-related genes have been associated with alternative stress coping styles, it is unclear if these genes may bias the development of conditioned behavioral responses to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish to associate a naturally aversive olfactory cue with a given context. Next, we investigated if expression of two neural plasticity and neurotransmission-related genes ( npas4a and gabbr1a ) were associated with the contextual fear conditioning differences between proactive and reactive stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and showed significantly higher npas4a expression in the medial and lateral zones of the dorsal telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). Our findings suggest that the expression of activity-dependent genes like npas4a may be differentially expressed across several interconnected forebrain regions in response to fearful stimuli and promote biases in fear learning among different stress coping styles.more » « less
- 
            Generalization allows previous experience to adaptively guide behavior when conditions change. The infralimbic (IL) subregion of the ventromedial prefrontal cortex plays a known role in generalization processes, although mechanisms remain unclear. A basic physical unit of memory storage and expression in the brain is a sparse, distributed group of neurons known as an engram. Here, we set out to determine whether an engram established during learning contributes to generalized responses in IL. Generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following pavlovian defensive (fear) conditioning. The first experiment was designed to test a global role for IL in generalization using chemogenetic manipulations. Results show IL regulates defensive behavior in response to ambiguous stimuli. IL silencing led to a switch in defensive state, from vigilant scanning to generalized freezing, while IL stimulation reduced freezing in favor of scanning. Leveraging activity-dependent “tagging” technology (ArcCreERT2 × eYFP system), an engram, preferentially located in IL Layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 d) following learning. When an IL engram established during learning was selectively chemogenetically silenced, freezing increased. Conversely, IL engram stimulation reduced freezing, suggesting attenuated fear generalization. Overall, these data identify a crucial role for IL in suppressing generalized conditioned responses. Further, an IL engram formed during learning functions to later attenuate a conditioned response in the presence of ambiguous threat stimuli.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    