skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A realized facilitation cascade mediated by biological soil crusts in a sagebrush steppe community
Abstract Biological soil crusts can have strong effects on vascular plant communities which have been inferred from short-term germination and early establishment responses. However, biocrusts are often assumed to function as an “organizing principle” in communities because their effects can “cascade” to interactions among crust-associated plant species. We conducted surveys and experiments to explore these cascades and found that biocrusts were positively associated with large patches (> 10 m diameter) of a dominant shrub Artemisia tridentata. At the smaller scale of individual shrubs and the open matrices between shrubs, biocrusts were negatively associated with Artemisia . Juveniles of Artemisia were found only in biocrusts in intershrub spaces and never under shrubs or in soil without biocrusts. In two-year field experiments, biocrusts increased the growth of Festuca and the photosynthetic rates of Artemisia . Festuca planted under Artemisia were also at least twice as large as those planted in open sites without crusts or where Artemisia were removed. Thus, biocrusts can facilitate vascular plants over long time periods and can contribute to a “realized” cascade with nested negative and positive interactions for a range of species, but unusual among documented cascades in that it includes only autotrophs.  more » « less
Award ID(s):
1757351
PAR ID:
10413729
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Interactions between plants and soil microbes influence plant nutrient transformations, including nitrogen (N) fixation, nutrient mineralization, and resource exchanges through fungal networks. Physical disturbances to soils can disrupt soil microbes and associated processes that support plant and microbial productivity. In low resource drylands, biological soil crusts (“biocrusts”) occupy surface soils and house key autotrophic and diazotrophic bacteria, non‐vascular plants, or lichens. Interactions among biocrusts, plants, and fungal networks between them are hypothesized to drive carbon and nutrient dynamics; however, comparisons across ecosystems are needed to generalize how soil disturbances alter microbial communities and their contributions to N pools and transformations. To evaluate linkages among plants, fungi, and biocrusts, we disturbed all unvegetated surfaces with human foot trampling twice yearly from 2013–2019 in dry conditions in cyanobacteria‐dominated biocrusts in the Chihuahuan Desert grassland and shrubland ecosystems. After 5 years, disturbance decreased the abundances of cyanobacteria (especiallyMicrocoleus steenstrupiiclade) and N‐fixers (Scytonemasp., andSchizothrixsp.) by >77% and chlorophyllaby up to 55% but, conversely, increased soil fungal abundance by 50% compared with controls. Responses of root‐associated fungi differed between the two dominant plant species and ecosystem types, with a maximum of 80% more aseptate hyphae in disturbed than in control plots. Although disturbance did not affect15N tracer transfer from biocrusts to the dominant grass,Bouteloua eriopoda, disturbance increased available soil N by 65% in the shrubland, and decreased leaf N ofB. eriopodaby up to 16%, suggesting that, although rapid N transfer during peak production was not affected by disturbance, over the long‐term plant nutrient content was disrupted. Altogether, the shrubland may be more resilient to detrimental changes due to disturbance than grassland, and these results demonstrated that disturbances to soil microbial communities have the potential to cause substantial changes in N pools by reducing and reordering biocrust taxa. 
    more » « less
  2. {"Abstract":["Interactions between plants and soil microbes influence plant\n nutrient transformations, including nitrogen (N) fixation, nutrient\n mineralization, and resource exchanges through fungal networks.\n Physical disturbances to soils can disrupt soil microbes and\n associated processes that support plant and microbial productivity.\n In low resource drylands, biological soil crusts\n ("biocrusts") occupy surface soils and house key\n autotrophic and diazotrophic bacteria, non-vascular plants, or\n lichens. Interactions among biocrusts, plants, and fungal networks\n between them are hypothesized to drive carbon and nutrient dynamics;\n however, comparisons across ecosystems are needed to generalize how\n soil disturbances alter microbial communities and their\n contributions to N pools and transformations. To evaluate linkages\n among plants, fungi, and biocrusts, we disturbed all unvegetated\n surfaces with human foot trampling twice yearly in dry conditions\n from 2013-2018 in cyanobacteria-dominated biocrusts in Chihuahuan\n Desert grassland and shrubland ecosystems. Our study included\n microbial communities and N pools sampled at different time points\n in the disturbance treatments at one or both sites. We began our\n sampling after observations in April 2018 that the chlorophyll a\n content was at least double in control than disturbed plots in both\n ecosystems (Chung et al. 2019). Stomping occurred in May, and we\n collected soil and plant samples in June 2018 for N pools and soil\n and root fungal abundance. We collected additional soil samples in\n September 2018 and conducted the 15N tracer experiment to observe\n rates of N transfer from biocrust to plants before the fall stomp\n treatment in October. We collected chlorophyll a samples and soils\n for sequencing bacteria in September of 2019, also before the fall\n stomp treatment."]} 
    more » « less
  3. Abstract Understanding the importance of biotic interactions in driving the distribution and abundance of species is a central goal of plant ecology. Early vascular plants likely colonized land occupied by biocrusts — photoautotrophic, surface‐dwelling soil communities comprised of cyanobacteria, bryophytes, lichens and fungi — suggesting biotic interactions between biocrusts and plants have been at play for some 2,000 million years. Today, biocrusts coexist with plants in dryland ecosystems worldwide, and have been shown to both facilitate or inhibit plant species performance depending on ecological context. Yet, the factors that drive the direction and magnitude of these effects remain largely unknown.We conducted a meta‐analysis of plant responses to biocrusts using a global dataset encompassing 1,004 studies from six continents.Meta‐analysis revealed there is no simple positive or negative effect of biocrusts on plants. Rather, plant responses differ by biocrust composition and plant species traits and vary across plant ontogeny. Moss‐dominated biocrusts facilitated, while lichen‐dominated biocrusts inhibited overall plant performance. Plant responses also varied among plant functional groups: C4grasses received greater benefits from biocrusts compared to C3grasses, and plants without N‐fixing symbionts responded more positively to biocrusts than plants with N‐fixing symbionts. Biocrusts decreased germination but facilitated growth of non‐native plant species.Synthesis. Results suggest that interspecific variation in plant responses to biocrusts, contingent on biocrust type, plant traits, and ontogeny can have strong impacts on plant species performance. These findings have important implications for understanding biocrust contributions to plant productivity and community assembly processes in ecosystems worldwide. 
    more » « less
  4. Conceptual context: Species interactions may couple the resource dynamics of different primary producers and may enhance productivity by reducing loss from the system. In low-resource systems, this biotic control may be especially important for maintaining productivity. In drylands, the activities of vascular plants and biological soil crusts can be decoupled in space because biocrusts grow on the soil surface but plant roots are underground, and decoupled in time due to biocrusts activating with smaller precipitation events than plants. Soil fungi are hypothesized to functionally couple the plants and biocrusts by transporting nutrients. We studied whether disrupting fungi between biocrusts and plants reduces nitrogen transfer and retention and decreases primary production as predicted by the fungal loop hypothesis. Additionally, we compared varying precipitation regimes that can drive different timing and depth of biological activities. Methodological approach: We used field mesocosms in which the potential for fungal connections between biocrusts and roots remained intact or were impeded by mesh. We imposed a precipitation regime of small, frequent or large, infrequent rain events. We used 15N to track fungal-mediated nitrogen (N) transfer. We quantified microbial carbon use efficiency and plant and biocrust production and N content. 
    more » « less
  5. Abstract The size and frequency of resource pulses can affect plant interactions and increase the abundance of invasive species relative to native species. We examined resource pulses generated during the desiccation and rehydration of communities of native biological soil crust (biocrust)‐forming mosses, in the context of positive associations between biocrusts and the invasive forb,Centaurea stoebe.We surveyedCentaureaand biocrust cover and evaluated how interactions amongCentaurea, biocrusts and water pulses influenced plant biomass and soil nitrogen in a field experiment.Centaureaseedling and biocrust interactions were also compared in a greenhouse experiment to evaluate differences related to life stage.In field surveys,Centaureaand biocrusts were positively associated. Across water pulse treatments, biocrust biomass decreased whenCentaureawas removed, indicating thatCentaureafacilitated biocrusts. Biocrusts did not affect adultCentaureain the field, butCentaureaseedling biomass was greater when grown with biocrusts in the greenhouse. Water pulses did not affect plant biomass, but interactions betweenCentaureaand biocrusts corresponded with variation in the effect of water pulses on soil nitrogen which were not evident whenCentaureaor biocrusts were grown alone. Twenty‐four hours after large water pulses were added, soilwas nine times higher in plots where biocrusts andCentaureaco‐occurred compared with small water pulse plots. In these same plots, soiltended to be lower at the end of the experiment.These results highlight positive interactions between an invasive exotic forb and native moss biocrust. Water pulses influenced soil nitrogen availability when both plants co‐occurred, but did not affect plant biomass, suggesting that resource pulses and species interactions can interact to affect ecosystem processes. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less