skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Globular cluster formation histories, masses, and radii inferred from gravitational waves
ABSTRACT

Globular clusters (GCs) are found in all types of galaxies and harbour some of the most extreme stellar systems, including black holes that may dynamically assemble into merging binary black holes (BBHs). Uncertain GC properties, including when they formed, their initial masses and sizes, affect their production rate of BBH mergers. Using the gravitational-wave transient catalogue (GWTC-3), we measure that dynamically assembled BBHs – those that are consistent with isotropic spin directions – make up ${61^{+29}_{-44}\%}$ of the total merger rate, with a local merger rate of ${10.9^{+16.8}_{-9.3}}$ Gpc−3 yr−1 rising to ${58.9^{+149.4}_{-46.0}}$ Gpc−3 yr−1 at z  = 1. We assume that this inferred rate describes the contribution from GCs and compare it against the Cluster Monte Carlo (cmc) simulation catalogue to directly fit for the GC initial mass function, virial radius distribution, and formation history. We find that GC initial masses are consistent with a Schechter function with slope ${\beta _m = -1.9^{+0.8}_{-0.8}}$ . Assuming a mass function slope of βm  = −2 and a mass range between 104–$10^8\, \mathrm{ M}_\odot$ , we infer a GC formation rate at z  = 2 of ${5.0^{+9.4}_{-4.0}}$ Gpc−3 yr−1, or ${2.1^{+3.9}_{-1.7}}\times 10^6\, \mathrm{ M}_\odot$ Gpc−3 yr−1 in terms of mass density. We find that the GC formation rate probably rises more steeply than the global star formation rate between z  = 0 and z  = 3 (82 per cent credibility) and implies a local number density that is ${f_\mathrm{ev} = 22.6^{+29.9}_{-16.2}}$ times higher than the observed density of survived GCs. This is consistent with expectations for cluster evaporation, but may suggest that other environments contribute to the rate of BBH mergers with significantly tilted spins.

 
more » « less
NSF-PAR ID:
10413910
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
522
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5546-5557
Size(s):
["p. 5546-5557"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Galactic nuclei are promising sites for stellar origin black hole (BH) mergers, as part of merger hierarchies in deep potential wells. We show that binary black hole (BBH) merger rates in active galactic nuclei (AGNs) should always exceed merger rates in quiescent galactic nuclei (nuclear star clusters, NSCs) around supermassive black holes (SMBHs) without accretion discs. This is primarily due to average binary lifetimes in AGNs that are significantly shorter than those in NSCs. The lifetime difference comes from rapid hardening of BBHs in AGNs, such that their semimajor axes are smaller than the hard–soft boundary of their parent NSC; this contrasts with the large average lifetime to merger for BBHs in NSCs around SMBHs, due to binary ionization mechanisms. Secondarily, merger rates in AGNs are enhanced by gas-driven binary formation mechanisms. Formation of new BHs in AGN discs is a minor contributor to the rate differences. With the gravitational wave detection of several BBHs with at least one progenitor in the upper mass gap, and signatures of dynamical formation channels in the χeff distribution, we argue that AGNs could contribute $\sim 25{\!-\!}80{{\ \rm per\ cent}}$ of the LIGO–Virgo measured rate of $\sim 24\, \rm {Gpc}^{-3} \rm {yr}^{-1}$.

     
    more » « less
  2. ABSTRACT

    Despite the increasing number of gravitational wave (GW) detections, the astrophysical origin of binary black hole (BBH) mergers remains elusive. A promising formation channel for BBHs is inside accretion discs around supermassive black holes, that power active galactic nuclei (AGN). In this paper, we test for the first time the spatial correlation between observed GW events and AGN. To this end, we assemble all sky catalogues with 1,412 (242) AGN with a bolometric luminosity greater than 1045.5erg s−1 ($10^{46}\, {\rm erg\, s}^{-1}$) with spectroscopic redshift of z ≤ 0.3 from the Milliquas catalogue, version 7.7b. These AGN are cross-matched with localization volumes of BBH mergers observed in the same redshift range by the LIGO and Virgo interferometers during their first three observing runs. We find that the fraction of the detected mergers originated in AGN brighter than $10^{45.5}\, {\rm erg\, s}^{-1}$ ($10^{46}\, {\rm erg\, s}^{-1}$) cannot be higher than 0.49 (0.17) at a 95 per cent credibility level. Our upper limits imply a limited BBH merger production efficiency of the brightest AGN, while most or all GW events may still come from lower luminosity ones. Alternatively, the AGN formation path for merging stellar-mass BBHs may be actually overall subdominant in the local Universe. To our knowledge, ours are the first observational constraints on the fractional contribution of the AGN channel to the observed BBH mergers.

     
    more » « less
  3. ABSTRACT

    In the near future, projects like Laser Interferometer Space Antenna (LISA) and pulsar timing arrays are expected to detect gravitational waves from mergers between supermassive black holes, and it is crucial to precisely model the underlying merger populations now to maximize what we can learn from this new data. Here, we characterize expected high-redshift (z > 2) black hole mergers using the very large volume Astrid cosmological simulation, which uses a range of seed masses to probe down to low-mass black holes (BHs), and directly incorporates dynamical friction so as to accurately model the dynamical processes that bring black holes to the galaxy centre where binary formation and coalescence will occur. The black hole populations in Astrid include black holes down to $\sim 10^{4.5} \, \mathrm{M}_\odot$, and remain broadly consistent with the TNG simulations at scales $\gt 10^6 \, \mathrm{M}_\odot$ (the seed mass used in TNG). By resolving lower mass black holes, the overall merger rate is ∼5× higher than in TNG. However, incorporating dynamical friction delays mergers compared to a recentring scheme, reducing the high-z merger rate mass-matched mergers by a factor of ∼2×. We also calculate the expected LISA signal-to-noise values, and show that the distribution peaks at high SNR (>100), emphasizing the importance of implementing a seed mass well below LISA’s peak sensitivity ($\sim 10^6 \, \mathrm{M}_\odot$) to resolve the majority of LISA’s gravitational wave detections.

     
    more » « less
  4. Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5   M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150  M ⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200  M ⊙ and effective aligned spin 0.8 at 0.056 Gpc −3 yr −1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc −3 yr −1 . 
    more » « less
  5. ABSTRACT

    Direct collapse black holes (BHs) are promising candidates for producing massive z ≳ 6 quasars, but their formation requires fine-tuned conditions. In this work, we use cosmological zoom simulations to study systematically the impact of requiring: (1) low gas angular momentum (spin), and (2) a minimum incident Lyman–Werner (LW) flux in order to form BH seeds. We probe the formation of seeds (with initial masses of $M_{\rm seed} \sim 10^4\!-\!10^6\, \mathrm{M}_{\odot }\, h^{-1})$ in haloes with a total mass >3000 × Mseed and a dense, metal-poor gas mass >5 × Mseed. Within this framework, we find that the seed-forming haloes have a prior history of star formation and metal enrichment, but they also contain pockets of dense, metal-poor gas. When seeding is further restricted to haloes with low gas spins, the number of seeds formed is suppressed by factors of ∼6 compared to the baseline model, regardless of the seed mass. Seed formation is much more strongly impacted if the dense, metal-poor gas is required to have a critical LW flux (Jcrit). Even for Jcrit values as low as 50J21, no $8\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$ seeds are formed. While lower mass ($1.25\times 10^{4},1\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$) seeds do form, they are strongly suppressed (by factors of ∼10–100) compared to the baseline model at gas mass resolutions of $\sim 10^4~\mathrm{M}_{\odot }\, h^{-1}$ (with even stronger suppression at higher resolutions). As a result, BH merger rates are also similarly suppressed. Since early BH growth is dominated by mergers in our models, none of the seeds are able to grow to the supermassive regime ($\gtrsim 10^6~\mathrm{M}_{\odot }\, h^{-1}$) by z = 7. Our results hint that producing the bulk of the z ≳ 6 supermassive BH population may require alternate seeding scenarios that do not depend on the LW flux, early BH growth dominated by rapid or super-Eddington accretion, or a combination of these possibilities.

     
    more » « less