skip to main content


Title: Climate change and infectious disease: a review of evidence and research trends
Abstract Background

Climate change presents an imminent threat to almost all biological systems across the globe. In recent years there have been a series of studies showing how changes in climate can impact infectious disease transmission. Many of these publications focus on simulations based on in silico data, shadowing empirical research based on field and laboratory data. A synthesis work of empirical climate change and infectious disease research is still lacking.

Methods

We conducted a systemic review of research from 2015 to 2020 period on climate change and infectious diseases to identify major trends and current gaps of research. Literature was sourced from Web of Science and PubMed literary repositories using a key word search, and was reviewed using a delineated inclusion criteria by a team of reviewers.

Results

Our review revealed that both taxonomic and geographic biases are present in climate and infectious disease research, specifically with regard to types of disease transmission and localities studied. Empirical investigations on vector-borne diseases associated with mosquitoes comprised the majority of research on the climate change and infectious disease literature. Furthermore, demographic trends in the institutions and individuals published revealed research bias towards research conducted across temperate, high-income countries. We also identified key trends in funding sources for most resent literature and a discrepancy in the gender identities of publishing authors which may reflect current systemic inequities in the scientific field.

Conclusions

Future research lines on climate change and infectious diseases should considered diseases of direct transmission (non-vector-borne) and more research effort in the tropics. Inclusion of local research in low- and middle-income countries was generally neglected. Research on climate change and infectious disease has failed to be socially inclusive, geographically balanced, and broad in terms of the disease systems studied, limiting our capacities to better understand the actual effects of climate change on health.

Graphical abstract 
more » « less
Award ID(s):
2116748
NSF-PAR ID:
10413923
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Infectious Diseases of Poverty
Volume:
12
Issue:
1
ISSN:
2049-9957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Neglected tropical diseases affect the most vulnerable populations and cause chronic and debilitating disorders. Socioeconomic vulnerability is a well-known and important determinant of neglected tropical diseases. For example, poverty and sanitation could influence parasite transmission. Nevertheless, the quantitative impact of socioeconomic conditions on disease transmission risk remains poorly explored.

    Methods

    This study investigated the role of socioeconomic variables in the predictive capacity of risk models of neglected tropical zoonoses using a decade of epidemiological data (2007–2018) from Brazil. Vector-borne diseases investigated in this study included dengue, malaria, Chagas disease, leishmaniasis, and Brazilian spotted fever, while directly-transmitted zoonotic diseases included schistosomiasis, leptospirosis, and hantaviruses. Environmental and socioeconomic predictors were combined with infectious disease data to build environmental and socioenvironmental sets of ecological niche models and their performances were compared.

    Results

    Socioeconomic variables were found to be as important as environmental variables in influencing the estimated likelihood of disease transmission across large spatial scales. The combination of socioeconomic and environmental variables improved overall model accuracy (or predictive power) by 10% on average (P < 0.01), reaching a maximum of 18% in the case of dengue fever. Gross domestic product was the most important socioeconomic variable (37% relative variable importance, all individual models exhibitedP < 0.00), showing a decreasing relationship with disease indicating poverty as a major factor for disease transmission. Loss of natural vegetation cover between 2008 and 2018 was the most important environmental variable (42% relative variable importance,P < 0.05) among environmental models, exhibiting a decreasing relationship with disease probability, showing that these diseases are especially prevalent in areas where natural ecosystem destruction is on its initial stages and lower when ecosystem destruction is on more advanced stages.

    Conclusions

    Destruction of natural ecosystems coupled with low income explain macro-scale neglected tropical and zoonotic disease probability in Brazil. Addition of socioeconomic variables improves transmission risk forecasts on tandem with environmental variables. Our results highlight that to efficiently address neglected tropical diseases, public health strategies must target both reduction of poverty and cessation of destruction of natural forests and savannas.

     
    more » « less
  2. Abstract Background

    Vector-borne diseases (VBDs) are important contributors to the global burden of infectious diseases due to their epidemic potential, which can result in significant population and economic impacts. Oropouche fever, caused by Oropouche virus (OROV), is an understudied zoonotic VBD febrile illness reported in Central and South America. The epidemic potential and areas of likely OROV spread remain unexplored, limiting capacities to improve epidemiological surveillance.

    Methods

    To better understand the capacity for spread of OROV, we developed spatial epidemiology models using human outbreaks as OROV transmission-locality data, coupled with high-resolution satellite-derived vegetation phenology. Data were integrated using hypervolume modeling to infer likely areas of OROV transmission and emergence across the Americas.

    Results

    Models based on one-support vector machine hypervolumes consistently predicted risk areas for OROV transmission across the tropics of Latin America despite the inclusion of different parameters such as different study areas and environmental predictors. Models estimate that up to 5 million people are at risk of exposure to OROV. Nevertheless, the limited epidemiological data available generates uncertainty in projections. For example, some outbreaks have occurred under climatic conditions outside those where most transmission events occur. The distribution models also revealed that landscape variation, expressed as vegetation loss, is linked to OROV outbreaks.

    Conclusions

    Hotspots of OROV transmission risk were detected along the tropics of South America. Vegetation loss might be a driver of Oropouche fever emergence. Modeling based on hypervolumes in spatial epidemiology might be considered an exploratory tool for analyzing data-limited emerging infectious diseases for which little understanding exists on their sylvatic cycles. OROV transmission risk maps can be used to improve surveillance, investigate OROV ecology and epidemiology, and inform early detection.

     
    more » « less
  3. Abstract The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vector–host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy of affected countries. Using modeling tools, we seek to predict where the transmission can occur based on suitable temperatures for BTV. We fit thermal performance curves to temperature-sensitive midge life-history traits, using a Bayesian approach. We incorporate these curves into S ( T ), a transmission suitability metric derived from the disease’s basic reproductive number, $$R_0.$$ R 0 . This suitability metric encompasses all components that are known to be temperature-dependent. We use trait responses for two species of key midge vectors, Culicoides sonorensis and Culicoides variipennis present in North America. Our results show that outbreaks of BTV are more likely between 15 $$^{\circ }$$ ∘ C and $$34^{\circ }\hbox { C}$$ 34 ∘ C , with predicted peak transmission risk at 26 $$^\circ$$ ∘  C. The greatest uncertainty in S ( T ) is associated with the following: the uncertainty in mortality and fecundity of midges near optimal temperature for transmission; midges’ probability of becoming infectious post-infection at the lower edge of the thermal range; and the biting rate together with vector competence at the higher edge of the thermal range. We compare three model formulations and show that incorporating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this modeling approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to assess risk and to anticipate potential locations of disease establishment. 
    more » « less
  4. Children, and particularly infants, have physiological, anatomic, and social factors that increase vulnerability to temperature extremes. We performed a systematic review to explore the association between acute adverse infant outcomes (children 0–1 years) and exposure to high and low ambient temperatures. MEDLINE (Pubmed), Embase, CINAHL Plus, and Global Health were searched alongside the reference lists of key papers. We included published journal papers in English that assessed adverse infant outcomes related to short-term weather-related temperature exposure. Twenty-six studies met our inclusion criteria. Outcomes assessed included: infant mortality (n = 9), sudden infant death syndrome (n = 5), hospital visits or admissions (n = 5), infectious disease outcomes (n = 5), and neonatal conditions such as jaundice (n = 2). Higher temperatures were associated with increased risk of acute infant mortality, hospital admissions, and hand, foot, and mouth disease. Several studies identified low temperature impacts on infant mortality and episodes of respiratory disease. Findings on temperature risks for sudden infant death syndrome were inconsistent. Only five studies were conducted in low- or middle-income countries, and evidence on subpopulations and temperature-sensitive infectious diseases was limited. Public health measures are required to reduce the impacts of heat and cold on infant health. 
    more » « less
  5. Introduction: The incidence of diarrhea, a leading cause of morbidity and mortality in low-income countries such as Nepal, is temperature-sensitive, suggesting it could be associated with climate change. With climate change fueled increases in the mean and variability of temperature and precipitation, the incidence of water and food-borne diseases are increasing, particularly in sub-Saharan Africa and South Asia. This national-level ecological study was undertaken to provide evidence linking weather and climate with diarrhea incidence in Nepal. Method: We analyzed monthly diarrheal disease count and meteorological data from all districts, spanning 15 eco-development regions of Nepal. Meteorological data and monthly data on diarrheal disease were sourced, respectively, from the Department of Hydrology and Meteorology and Health Management Information System (HMIS) of the Government of Nepal for the period from 2002 to 2014. Time-series log-linear regression models assessed the relationship between maximum temperature, minimum temperature, rainfall, relative humidity, and diarrhea burden. Predictors with p-values < 0.25 were retained in the fitted models. Results: Overall, diarrheal disease incidence in Nepal significantly increased with 1 °C increase in mean temperature (4.4%; 95% CI: 3.95, 4.85) and 1 cm increase in rainfall (0.28%; 95% CI: 0.15, 0.41). Seasonal variation of diarrheal incidence was prominent at the national level (11.63% rise in diarrheal cases in summer (95% CI: 4.17, 19.61) and 14.5% decrease in spring (95% CI: −18.81, −10.02) compared to winter season). Moreover, the effects of temperature and rainfall were highest in the mountain region compared to other ecological regions of Nepal. Conclusion: Our study provides empirical evidence linking weather factors and diarrheal disease burden in Nepal. This evidence suggests that additional climate change could increase diarrheal disease incidence across the nation. Mountainous regions are more sensitive to climate variability and consequently the burden of diarrheal diseases. These findings can be utilized to allocate necessary resources and envision a weather-based early warning system for the prevention and control of diarrheal diseases in Nepal. 
    more » « less