Abstract Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning‐damaged trees are a consistent resource for tropical saproxylic (i.e., dead wood‐dependent) organisms, but patterns of consumer colonization and succession following lightning strikes are not known. Here, we documented the occurrence of four common consumer taxa spanning multiple trophic levels—beetles,Aztecaants, termites, and fungi—in lightning strike sites and nearby undamaged control sites over time in a lowland forest of Panama. Beetle abundance was 10 times higher in lightning strike sites than in paired control sites, and beetle assemblages were compositionally distinct. Those in strike sites were initially dominated by bark and ambrosia beetles (Curculionidae: Platypodinae, Scolytinae); bark and ambrosia beetles, and predaceous taxa increased in abundance relatively synchronously. Beetle activity and fungal fruiting bodies, respectively, were 3.8 and 12.2 times more likely to be observed in lightning‐damaged trees in strike sites versus undamaged trees in paired control sites, whereas the occurrence probabilities ofAztecaants and termites were similar between damaged trees in lightning strike sites and undamaged trees in control sites. Tree size also was important; larger dead trees in strike sites were more likely to support beetles, termites, and fungal fruiting bodies, and larger trees—regardless of mortality status—were more likely to hostAzteca. Beetle presence was associated with higher rates of subsequent fungal presence, providing some evidence of beetle‐associated priority effects on colonization patterns. These results suggest that lightning plays a key role in supporting tropical insect and fungal consumers by providing localized patches of suitable habitat. Any climate‐driven changes in lightning frequency in tropical forests will likely affect a broad suite of consumer organisms, potentially altering ecosystem‐level processes.
more »
« less
Host switching by an ambrosia beetle fungal mutualist: Mycangial colonization of indigenous beetles by the invasive laurel wilt fungal pathogen
Abstract Ambrosia beetles require their fungal symbiotic partner as their cultivated (farmed) food source in tree galleries. While most fungal‐beetle partners do not kill the host trees they inhabit, since their introduction (invasion) into the United states around ~2002, the invasive beetleXyleborus glabratushas vectored its mutualist partner (but plant pathogenic) fungus,Harringtonia lauricola, resulting in the deaths of over 300 million trees. Concerningly, indigenous beetles have been caught bearingH. lauricola. Here, we show colonization of the mycangia of the indigenousX. affinisambrosia beetle byH. lauricola. Mycangial colonization occurred within 1 h of feeding, with similar levels seen forH. lauricolaas found for the nativeX. affinis‐R. arxiifungal partner. Fungal mycangial occupancy was stable over time and after removal of the fungal source, but showed rapid turnover when additional fungal cells were available. Microscopic visualization revealed two pre‐oral mycangial pouches of ~100–200 × 25–50 μm/each, with narrow entry channels of 25–50 × 3–10 μm. Fungi within the mycangia underwent a dimorphic transition from filamentous/blastospore growth to yeast‐like budding with alterations to membrane structures. These data identify the characteristics of ambrosia beetle mycangial colonization, implicating turnover as a mechanism for host switching ofH. lauricolato other ambrosia beetle species.
more »
« less
- Award ID(s):
- 2418026
- PAR ID:
- 10413932
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Environmental Microbiology
- Volume:
- 25
- Issue:
- 10
- ISSN:
- 1462-2912
- Format(s):
- Medium: X Size: p. 1894-1908
- Size(s):
- p. 1894-1908
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dyer, Lee (Ed.)Abstract Lightning is a common agent of disturbance in many forest ecosystems. Lightning-damaged trees are a potentially important resource for beetles, but most evidence for this association is limited to temperate pine forests. Here, we evaluated the relationship between lightning damage and beetle colonization of tropical trees. We recorded the number of beetle holes on the trunks of trees from 10 strike sites (n = 173 lightning-damaged trees) and 10 matching control sites (n = 137 control trees) in Panama. The trunks of lightning-struck trees had 370% more beetle holes than control trees. The abundance of beetle holes increased with increasing total crown dieback among both control and lightning-damaged trees, and with larger tree diameter among lightning-struck trees. Beetle holes also were more abundant in trunk sections of lightning-damaged trees located directly below a damaged section of the crown. The results of this study suggest that lightning damage facilitates beetle colonization in tropical forest trees and provide a basis for investigations of the effects of lightning-caused disturbance on beetle population dynamics and assemblage structure.more » « less
-
This protocol describes the different methods to collect and preserve bark and ambrosia beetles, detailing collecting tools, recording relevant data, and optimizing step-by-step methods to extract beetles from twigs, branches, bark, and trunks. It elaborates on trapping techniques, tools, lures, baits, and beetle preservation. The main rule of manual collecting is to not attempt to pry the insect out of the wood or bark, but instead, remove the wood/bark away from the beetle: gently and systematically. The main rule of trapping is that there is no general attractant; instead, attractants and traps should reflect the ecology of the targeted beetle taxa.more » « less
-
null (Ed.)Bark beetles naturally inhabit forests and can cause large-scale tree mortality when they reach epidemic population numbers. A recent epidemic (1990s–2010s), primarily driven by mountain pine beetles ( Dendroctonus ponderosae ), was a leading mortality agent in western United States forests. Predictive models of beetle populations and their impact on forests largely depend on host related parameters, such as stand age, basal area, and density. We hypothesized that bark beetle attack patterns are also dependent on inferred beetle population densities: large epidemic populations of beetles will preferentially attack large-diameter trees, and successfully kill them with overwhelming numbers. Conversely, small endemic beetle populations will opportunistically attack stressed and small trees. We tested this hypothesis using 12 years of repeated field observations of three dominant forest species (lodgepole pine Pinus contorta , Engelmann spruce Picea engelmannii , and subalpine fir Abies lasiocarpa ) in subalpine forests of southeastern Wyoming paired with a Bayesian modeling approach. The models provide probabilistic predictions of beetle attack patterns that are free of assumptions required by frequentist models that are often violated in these data sets. Furthermore, we assessed seedling/sapling regeneration in response to overstory mortality and hypothesized that higher seedling/sapling establishment occurs in areas with highest overstory mortality because resources are freed from competing trees. Our results indicate that large-diameter trees were more likely to be attacked and killed by bark beetles than small-diameter trees during epidemic years for all species, but there was no shift toward preferentially attacking small-diameter trees in post-epidemic years. However, probabilities of bark beetle attack and mortality increased for small diameter lodgepole pine and Engelmann spruce trees in post-epidemic years compared to epidemic years. We also show an increase in overall understory growth (graminoids, forbs, and shrubs) and seedling/sapling establishment in response to beetle-caused overstory mortality, especially in lodgepole pine dominated stands. Our observations provide evidence of the trajectories of attack and mortality as well as early forest regrowth of three common tree species during the transition from epidemic to post-epidemic stages of bark beetle populations in the field.more » « less
-
Abstract The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived fromSorghum bicolorandS. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.more » « less
An official website of the United States government
