skip to main content


Title: Aligning Retrograde Nuclear Cluster Orbits with an Active Galactic Nucleus Accretion Disc
ABSTRACT

Stars and stellar remnants orbiting a supermassive black hole (SMBH) can interact with an active galactic nucleus (AGN) disc. Over time, prograde orbiters (inclination i < 90°) decrease inclination, as well as semimajor axis (a) and eccentricity (e) until orbital alignment with the gas disc (‘disc capture’). Captured stellar-origin black holes (sBH) add to the embedded AGN population that drives sBH–sBH mergers detectable in gravitational waves using LIGO–Virgo–KAGRA or sBH–SMBH mergers detectable with Laser Interferometer Space Antenna. Captured stars can be tidally disrupted by sBH or the SMBH or rapidly grow into massive ‘immortal’ stars. Here, we investigate the behaviour of polar and retrograde orbiters (i ≥ 90°) interacting with the disc. We show that retrograde stars are captured faster than prograde stars, flip to prograde orientation (i < 90°) during capture, and decrease a dramatically towards the SMBH. For sBH, we find a critical angle iret ∼ 113°, below which retrograde sBH decay towards embedded prograde orbits (i → 0°), while for io > iret sBH decay towards embedded retrograde orbits (i → 180°). sBH near polar orbits (i ∼ 90°) and stars on nearly embedded retrograde orbits (i ∼ 180°) show the greatest decreases in a. Whether a star is captured by the disc within an AGN lifetime depends primarily on disc density, and secondarily on stellar type and initial a. For sBH, disc capture time is longest for polar orbits, low-mass sBH, and lower density discs. Larger mass sBH should typically spend more time in AGN discs, with implications for the spin distribution of embedded sBH.

 
more » « less
Award ID(s):
2219090 1831412 2007422
NSF-PAR ID:
10413944
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
522
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5393-5401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Active galactic nuclei (AGN) are powered by the accretion of discs of gas on to supermassive black holes (SMBHs). Stars and stellar remnants orbiting the SMBH in the nuclear star cluster (NSC) will interact with the AGN disc. Orbiters plunging through the disc experience a drag force and, through repeated passage, can have their orbits captured by the disc. A population of embedded objects in AGN discs may be a significant source of binary black hole mergers, supernovae, tidal disruption events, and embedded gamma-ray bursts. For two representative AGN disc models, we use geometric drag and Bondi–Hoyle–Littleton drag to determine the time to capture for stars and stellar remnants. We assume a range of initial inclination angles and semimajor axes for circular Keplerian prograde orbiters. Capture time strongly depends on the density and aspect ratio of the chosen disc model, the relative velocity of the stellar object with respect to the disc, and the AGN lifetime. We expect that for an AGN disc density $\rho \gtrsim 10^{-11}{\rm g\, cm^{-3}}$ and disc lifetime ≥1 Myr, there is a significant population of embedded stellar objects, which can fuel mergers detectable in gravitational waves with LIGO-Virgo and LISA. 
    more » « less
  2. Abstract

    Stellar-mass black holes (sBHs) embedded in gaseous disks of active galactic nuclei (AGN) can be important sources of detectable gravitational radiation for LIGO/Virgo when they form binaries and coalesce due to orbital decay. In this paper, we study the effect of dynamical friction (DF) on the formation of BH binaries in AGN disks usingN-body simulations. We employ two simplified models of DF, with the force on the BH depending on Δv, the velocity of the sBH relative to the background Keplerian gas. We integrate the motion of two sBHs initially on circular orbits around the central supermassive black hole (SMBH) and evaluate the probability of binary formation under various conditions. We find that both models of DF (with different dependence of the frictional coefficient on ∣Δv∣) can foster the formation of binaries when the effective friction timescaleτsatisfies ΩKτ≲ 20–30 (where ΩKis the Keplerian frequency around the SMBH): prograde binaries are formed when the DF is stronger (smallerτ), while retrograde binaries dominate when the DF is weaker (largerτ). We determine the distribution of both prograde and retrograde binaries as a function of initial orbital separation and the DF strength. Using our models of DF, we show that for a given sBH number density in the AGN disk, the formation rate of sBH binaries increases with decreasingτand can reach a moderate value with a sufficiently strong DF.

     
    more » « less
  3. ABSTRACT

    As active galactic nuclei (AGN) ‘turn on’, some stars end up embedded in accretion discs around supermassive black holes (SMBHs) on retrograde orbits. Such stars experience strong headwinds, aerodynamic drag, ablation, and orbital evolution on short time-scales. The loss of orbital angular momentum in the first ∼0.1 Myr of an AGN leads to a heavy rain of stars (‘starfall’) into the inner disc and on to the SMBH. A large AGN loss cone (θAGN, lc) can result from binary scatterings in the inner disc and yield tidal disruption events (TDEs). Signatures of starfall include optical/UV flares that rise in luminosity over time, particularly in the inner disc. If the SMBH mass is $M_{\rm SMBH} \gtrsim 10^{8}\, \mathrm{M}_{\odot }$, flares truncate abruptly and the star is swallowed. If $M_{\rm SMBH}\lt 10^{8}\, \mathrm{M}_{\odot }$, and if the infalling orbit lies within θAGN, lc, the flare is followed by a TDE that can be prograde or retrograde relative to the AGN inner disc. Retrograde AGN TDEs are overluminous and short-lived as in-plane ejecta collide with the inner disc and a lower AGN state follows. Prograde AGN TDEs add angular momentum to inner disc gas and so start off looking like regular TDEs but are followed by an AGN high state. Searches for such flare signatures test models of AGN ‘turn on’, SMBH mass, as well as disc properties and the embedded population.

     
    more » « less
  4. ABSTRACT

    Stars embedded in active galactic nucleus (AGN) discs or captured by them may scatter onto the supermassive black hole (SMBH), leading to a tidal disruption event (TDE). Using the moving-mesh hydrodynamics simulations with arepo, we investigate the dependence of debris properties in in-plane TDEs in AGN discs on the disc density and the orientation of stellar orbits relative to the disc gas (pro- and retro-grade). Key findings are: (1) Debris experiences continuous perturbations from the disc gas, which can result in significant and continuous changes in debris energy and angular momentum compared to ‘naked’ TDEs. (2) Above a critical density of a disc around an SMBH with mass M• [ρcrit ∼ 10−8 g cm−3 (M•/106 M⊙)−2.5] for retrograde stars, both bound and unbound debris is fully mixed into the disc. The density threshold for no bound debris return, inhibiting the accretion component of TDEs, is $\rho _{\rm crit,bound} \sim 10^{-9}{\rm g~cm^{-3}}(M_{\bullet }/10^{6}\, {\rm M}_{\odot })^{-2.5}$. (3) Observationally, AGN-TDEs transition from resembling naked TDEs in the limit of ρdisc ≲ 10−2ρcrit,bound to fully muffled TDEs with associated inner disc state changes at ρdisc ≳ ρcrit,bound, with a superposition of AGN + TDE in between. Stellar or remnant passages themselves can significantly perturb the inner disc. This can lead to an immediate X-ray signature and optically detectable inner disc state changes, potentially contributing to the changing-look AGN phenomenon. (4) Debris mixing can enrich the average disc metallicity over time if the star’s metallicity exceeds that of the disc gas. We point out that signatures of AGN-TDEs may be found in large AGN surveys.

     
    more » « less
  5. ABSTRACT

    A test particle orbit around an eccentric binary has two stationary states in which there is no nodal precession: coplanar and polar. Nodal precession of a misaligned test particle orbit centres on one of these stationary states. A low-mass circumbinary disc undergoes the same precession and moves towards one of these states through dissipation within the disc. For a massive particle orbit, the stationary polar alignment occurs at an inclination less than 90°, which is the prograde-polar stationary inclination. A sufficiently high angular momentum particle has an additional higher inclination stationary state, the retrograde-polar stationary inclination. Misaligned particle orbits close to the retrograde-polar stationary inclination are not nested like the orbits close to the other stationary points. We investigate the evolution of a gas disc that begins close to the retrograde-polar stationary inclination. With hydrodynamical disc simulations, we find that the disc moves through the unnested crescent shape precession orbits and eventually moves towards the prograde-polar stationary inclination, thus increasing the parameter space over which circumbinary discs move towards polar alignment. If protoplanetary discs form with an isotropic orientation relative to the binary orbit, then polar discs may be more common than coplanar discs around eccentric binaries, even for massive discs. This has implications for the alignment of circumbinary planets.

     
    more » « less