skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Contribution of rock glacier discharge to late summer and fall streamflow in the Uinta Mountains, Utah, USA
Abstract. Water draining from rock glaciers in the Uinta Mountains of Utah(USA) was analyzed and compared with samples of groundwater and water fromthe primary stream in a representative 5000 ha drainage. Rock glacier water resembles snowmelt in the early summer but evolves to higher values of d-excess and greatly elevated Ca and Mg content as the melt season progresses. This pattern is consistent with models describing a transition from snowmelt to melting of seasonal ice to melting of perennial ice in the rock glacier interior in late summer and fall. Water derived from this internal ice appears to have been the source of ∼25 % of the streamflow in this study area during September of 2021. This result emphasizes the significant role that rock glaciers can play in the hydrology of high-elevation watersheds, particularly in summers following a winter with below-average snowpack.  more » « less
Award ID(s):
1935200
NSF-PAR ID:
10413971
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
27
Issue:
2
ISSN:
1607-7938
Page Range / eLocation ID:
543 to 557
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rock glaciers are common geomorphic features in alpine landscapes and comprise a potentially significant but poorly quantified water resource. This project focused on three complementary questions germane to rock glacier hydrology: 1) Does the composition of rock glacier meltwater vary from year to year? 2) How dependent is the composition of rock glacier meltwater on lithology? And 3) How does the presence of rock glaciers in a catchment change stream water chemistry? To address these questions, we deployed automated samplers to collect water from late June through mid-October 2022 in two rock-glacierized mountain ranges in Utah, United States characterized by different lithologies. In the Uinta Mountains of northern Utah, where bedrock is predominantly quartzite, water was collected at springs discharging from two rock glaciers previously shown to release water in late summer sourced from internal ice. In the La Sal Mountains of southeastern Utah, where trachyte bedrock is widespread, water was collected at a rock glacier spring, along the main stream in a watershed containing multiple rock glaciers, and from a stream in a watershed where rock glaciers are absent. Precipitation was also collected, and data loggers for water temperature and electric conductivity were deployed. Water samples were analyzed for stable isotopes with cavity ring-down spectroscopy and hydrochemistry with ICP-MS. Our data show that water discharging from rock glaciers in the Uinta Mountains exhibits a shift from a snowmelt source to an internal ice source over the course of the melt season that is consistent from year to year. We also found that the chemistry of rock glacier water in the two study areas is notably different in ways that can be linked back to their contrasting bedrock types. Finally, in the La Sal Mountains, the properties of water along the main stream in a rock-glacierized basin resemble the properties of water discharging from rock glaciers, and strongly contrast with the water in a catchment lacking rock glaciers. Collectively these results underscore the role of rock glaciers as an agent influencing the hydrochemistry of water in high-elevation stream systems. 
    more » « less
  2. Rock glaciers are common landforms in mountainous areas of the western US. The motion of active rock glaciers is a key indicator of ice content, offering connections to climate and hydrologic systems. Here, we quantified the movement of six rock glaciers in the La Sal and Uinta Mountains of Utah through repeat differential GPS surveying. Networks of 10–41 points on each rock glacier were surveyed in September 2021; July 2022; September 2022; and July 2023. We found that all features are moving with average annual rates of motion from 1.5 ± 0.8 to 18.5 ± 7.5 cm/yr. Rock glaciers move up to 3× faster in the summer than in the winter, and rates of motion were greater in 2023 after a winter with above-average snowfall, emphasizing the role of liquid water availability. Velocities of individual points in the winter of 2021–22 are positively correlated with velocities during the winter of 2022–23, suggesting that spatial variability of motion is not stochastic, but rather reflects internal properties of each rock glacier. Bottom temperature of snow measurements during winter, and the temperature of springs discharging water in summer, suggest that these rock glaciers contain modern permafrost. Radiocarbon data document advance of one rock glacier during the Little Ice Age. Our GPS dataset reveals complicated patterns of rock glacier movement, and the network of survey points we established will be a valuable baseline for detecting future cryosphere change in these mountains. 
    more » « less
  3. Tamaki, Hideyuki (Ed.)
    ABSTRACT Glaciers are rapidly receding under climate change. A melting cryosphere will dramatically alter global sea levels, carbon cycling, and water resource availability. Glaciers host rich biotic communities that are dominated by microbial diversity, and this biodiversity can impact surface albedo, thereby driving a feedback loop between biodiversity and cryosphere melt. However, the microbial diversity of glacier ecosystems remains largely unknown outside of major ice sheets, particularly from a temporal perspective. Here, we characterized temporal dynamics of bacteria, eukaryotes, and algae on the Paradise Glacier, Mount Rainier, USA, over nine time points spanning the summer melt season. During our study, the glacier surface steadily darkened as seasonal snow melted and darkening agents accumulated until new snow fell in late September. From a community-wide perspective, the bacterial community remained generally constant while eukaryotes and algae exhibited temporal progression and community turnover. Patterns of individual taxonomic groups, however, were highly stochastic. We found little support for our a priori prediction that autotroph abundance would peak before heterotrophs. Notably, two different trends in snow algae emerged—an abundant early- and late-season operational taxonomic unit (OTU) with a different midsummer OTU that peaked in August. Overall, our results highlight the need for temporal sampling to clarify microbial diversity on glaciers and that caution should be exercised when interpreting results from single or few time points. IMPORTANCE Microbial diversity on mountain glaciers is an underexplored component of global biodiversity. Microbial presence and activity can also reduce the surface albedo or reflectiveness of glaciers, causing them to absorb more solar radiation and melt faster, which in turn drives more microbial activity. To date, most explorations of microbial diversity in the mountain cryosphere have only included single time points or focused on one microbial community (e.g., bacteria). Here, we performed temporal sampling over a summer melt season for the full microbial community, including bacteria, eukaryotes, and fungi, on the Paradise Glacier, Washington, USA. Over the summer, the bacterial community remained generally constant, whereas eukaryote and algal communities temporally changed through the melt season. Individual taxonomic groups, however, exhibited considerable stochasticity. Overall, our results highlight the need for temporal sampling on glaciers and that caution should be exercised when interpreting results from single or few time points. 
    more » « less
  4. Abstract

    Glacier sliding has major environmental consequences, but friction caused by debris in the basal ice of glaciers is seldom considered in sliding models. To include such friction, divergent hypotheses for clast‐bed contact forces require testing. In experiments we rotate an ice ring (outside diameter = 0.9 m), with and without isolated till clasts, over a smooth rock bed. Ice is kept at its pressure‐melting temperature, and meltwater drains along a film at the bed to atmospheric pressure at its edges. The ice pressure or bed‐normal component of ice velocity is controlled, while bed shear stress is measured. Results with debris‐free ice indicate friction coefficients < 0.01. Shear stresses caused by clasts in ice are independent of ice pressure. This independence indicates that with increases in ice pressure the water pressure in cavities observed beneath clasts increases commensurately to allow drainage of cavities into the melt film, leaving clast‐bed contact forces unaffected. Shear stresses, instead, are proportional to bed‐normal ice velocity. Cavities and the absence of regelation ice indicate that, unlike model formulations, regelation past clasts does not control contact forces. Alternatively, heat from the bed melts ice above clasts, creating pressure gradients in adjacent meltwater films that cause contact forces to depend on bed‐normal ice velocity. This model can account for observations if rock friction predicated on Hertzian clast‐bed contacts is assumed. Including debris‐bed friction in glacier sliding models will require coupling the ice velocity field near the bed to contact forces rather than imposing a pressure‐based friction rule.

     
    more » « less
  5. Abstract. Rock glaciers are a prominent component of many alpine landscapes andconstitute a significant water resource in some arid mountainenvironments. Here, we employ satellite-based interferometric syntheticaperture radar (InSAR) between 2016 and 2019 to identify and monitor activeand transitional rock glaciers in the Uinta Mountains (Utah, USA), an area of∼3000 km2. We used mean velocity maps to generate aninventory for the Uinta Mountains containing 205 active and transitional rockglaciers. These rock glaciers are 11.9 ha in area on average andlocated at a mean elevation of 3308 m, where mean annual airtemperature is −0.25 ∘C. The mean downslope velocity for theinventory is 1.94 cm yr−1, but individual rock glaciers have velocities ranging from0.35 to 6.04 cm yr−1. To search for relationships with climaticdrivers, we investigated the time-dependent motion of three rock glaciers. Wefound that rock glacier motion has a significant seasonal component, withrates that are more than 5 times faster during the late summer compared to therest of the year. Rock glacier velocities also appear to be correlated withthe snow water equivalent of the previous winter's snowpack. Our resultsdemonstrate the ability to use satellite InSAR to monitor rock glaciers overlarge areas and provide insight into the environmental factors that controltheir kinematics. 
    more » « less