Modeling convective air movement in unsaturated porous media requires appropriate characterization of the relative air permeability (RAP). Adopting Assouline et al. (1998,
A recent laboratory study suggests that water vapor displays structured absorption features over the 290–350 nm region, with maximum and minimum cross‐sections of 8.4 × 10−25and 1.4 × 10−25 cm2/molecule at room temperature (Pei et al. 2019,
- PAR ID:
- 10414144
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 126
- Issue:
- 10
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.1029/97WR03039 ) water retention function that is based on the Weibull pore size distribution, this study was conducted to derive seven new predictive RAP models. These 7 new models, together with another 3 models developed by Assouline et al. (2016,https://doi.org/10.1002/2015WR018286 ), were then compared with data from 30 disturbed soil samples to investigate their predictive RAP performances. The model and data comparison results showed that the modified Burdine, modified Mualem, and modified Alexander and Skaggs relative permeability models proposed by Yang and Mohanty (2015,https://doi.org/10.1002/2014WR016190 ) had the highest accuracy for the RAP prediction among the 10 investigated models, which indicated that the tortuosity and connectivity exponent of water phase should be smaller than that of air phase for the disturbed soil samples. The modified Burdine, modified Mualem, and modified Alexander and Skaggs models were then the suggested RAP parameterizations for the subsurface multiphase flow numerical simulation. -
Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,
https://doi.org/10.1029/2011GL048099 ; Lu et al., 2011,https://doi.org/10.1029/2010JA016141 ; Pu et al., 2019,https://doi.org/10.1029/2019GL082743 ; Pu et al., 2020,https://doi.org/10.1029/2020GL089427 ), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154 ; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627 ; Wada et al., 2020,https://doi.org/10.1029/2019JD031730 ), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. -
Abstract The polar
F region ionosphere frequently exhibits sporadic variability (e.g., Meek, 1949,https://doi.org/10.1029/JZ054i004p00339 ; Hill, 1963,https://doi.org/10.1175/1520‐0469(1963)020<0492:SEOLII>2.0.CO;2 ). Recent satellite data analysis (Noja et al., 2013,https://doi.org/10.1002/rds.20033 ; Chartier et al., 2018,https://doi.org/10.1002/2017JA024811 ) showed that the high‐latitudeF region ionosphere exhibits sporadic enhancements more frequently in January than in July in both the northern and southern hemispheres. The same pattern has been seen in statistics of the degradation and total loss of GPS service onboard low‐Earth orbit satellites (Xiong et al. 2018,https://doi.org/10.5194/angeo‐36‐679‐2018 ). Here, we confirm the existence of this annual pattern using ground GPS‐based images of TEC from the MIDAS algorithm. Images covering January and July 2014 confirm that the high‐latitude (>70 MLAT)F region exhibits a substantially larger range of values in January than in July in both the northern and southern hemispheres. The range of TEC values observed in the polar caps is 38–57 TECU (north‐south) in January versus 25–37 TECU in July. First‐principle modeling using SAMI3 reproduces this pattern, and indicates that it is caused by an asymmetry in plasma levels (30% higher in January than in July across both polar caps), as well as 17% longer O+plasma lifetimes in northern hemisphere winter, compared to southern hemisphere winter. -
Abstract A very high spatial resolution (
∼ 25 m pixel at 90 km altitude) OH airglow imager was installed at the Andes Lidar Observatory on Cerro Pachón, Chile, in February 2016. This instrument was collocated with a Na wind‐temperature lidar. On 1 March 2016, the lidar data showed that the atmosphere was dynamically unstable before 0100 UT and thus conducive to the formation of Kelvin‐Helmholtz instabilities (KHIs). The imager revealed the presence of a KHI and an apparent atmospheric gravity wave (AGW) propagating approximately perpendicular to the plane of primary KHI motions. The AGW appears to have induced modulations of the shear layer leading to misalignments of the emerging KHI billows. These enabled strong KHI billow interactions, as they achieved large amplitudes and a rapid transition to turbulence thereafter. The interactions manifested themselves as vortex tube and knot features that were earlier identified in laboratory studies, as discussed in Thorpe (1987,https://doi.org/10.1029/JC092iC05p05231 ; 2002,https://doi.org/10.1002/qj.200212858307 ) and inferred to be widespread in the atmosphere based on features seen in tropospheric clouds but which have never been identified in previous upper atmospheric observations. This study presents the first high‐resolution airglow imaging observation of these KHI interaction dynamics that drive rapid transitions to turbulence and suggest the potential importance of these dynamics in the mesosphere and at other altitudes. A companion paper (Fritts et al., 2020,https://doi.org/10.1029/2020JD033412 ) modeling these dynamics confirms that the vortex tubes and knots yield more rapid and significantly enhanced turbulence relative to the internal instabilities of individual KHI billows. -
Abstract Recent field studies have shown that the presence of ash in the atmosphere can produce measurable attenuation of Global Positioning System (GPS) signals (Aranzulla et al., 2013,
https://doi.org/10.1007/s10291-012-0294-4 ; Larson, 2013,https://doi.org/10.1002/grl.50556 ; Larson et al., 2017,https://doi.org/10.1016/j.jvolgeores.2017.04.005 ). The ability to detect plumes using GPS is appealing because many active volcanoes are already instrumented with high‐quality receivers. However, analyses using a Ralyeigh approximation have shown that the large attenuations cannot be explained by the scattering and absorption associated with ash or hydrometeors alone. Here, we show that the extinction of GPS signals, which fall into the L‐band of the electromagnetic spectrum, may be exacerbated significantly by excess surface charge on pyroclasts. Indeed, volcanic eruptions are often accompanied by a range of electrostatic processes, leading, in some cases, to spectacular lightning storms. We use a modified Mie scattering model to demonstrate that electrostatic effects can increase the extinction of L‐band radiation by up to an order of magnitude, producing attenuations consistent with those observed in the field. Thus, future work involving GPS as a tool to remotely probe plumes must take into account the electrification of ash in radiative transfer models. Additionally, we propose that the sensitivity of GPS to particle charging may catalyze the development of new techniques to explore electrostatic processes in plumes, especially if GPS measurements are complemented with millimeter‐wave RADAR measurements.