skip to main content

Title: Target Enrichment and Extensive Population Sampling Help Untangle the Recent, Rapid Radiation of Oenothera Sect. Calylophus

Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking noncoding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic, and morphological diversity in the group. We found that the combination of exons and flanking noncoding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. more » This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation. [Gypsum endemism; Oenothera sect. Calylophus; Onagraceae; phylogenomics; pollinator shift; recent radiation; target enrichment.]

« less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Systematic Biology
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Charleston, Michael (Ed.)
    Abstract We present a 517-gene phylogenetic framework for the breadfruit genus Artocarpus (ca. 70 spp., Moraceae), making use of silica-dried leaves from recent fieldwork and herbarium specimens (some up to 106 years old) to achieve 96% taxon sampling. We explore issues relating to assembly, paralogous loci, partitions, and analysis method to reconstruct a phylogeny that is robust to variation in data and available tools. Although codon partitioning did not result in any substantial topological differences, the inclusion of flanking noncoding sequence in analyses significantly increased the resolution of gene trees. We also found that increasing the size of data sets increased convergence between analysis methods but did not reduce gene-tree conflict. We optimized the HybPiper targeted-enrichment sequence assembly pipeline for short sequences derived from degraded DNA extracted from museum specimens. Although the subgenera of Artocarpus were monophyletic, revision is required at finer scales, particularly with respect to widespread species. We expect our results to provide a basis for further studies in Artocarpus and provide guidelines for future analyses of data sets based on target enrichment data, particularly those using sequences from both fresh and museum material, counseling careful attention to the potential of off-target sequences to improve resolution. [Artocarpus; Moraceae;more »noncoding sequences; phylogenomics; target enrichment.]« less
  2. Buerkle, Alex (Ed.)
    Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species ) . Taxa within Erythranthe , particularly the parapatric and putatively sister species M . lewisii (bee-pollinated) and M . cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M . cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M . lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele sharing (Patterson’s D-statistic and related tests) indicate that gene tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination andmore »adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M . lewisii and M . cardinalis . Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M . lewisii and Southern Californian M . parishii each carrying organelle genomes nested within respective sympatric M . cardinalis clades. A recent organellar transfer from M . cardinalis , an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M . parishii organelles in hybrids with M . lewisii . Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.« less
  3. The Caribbean island biota is characterized by high levels of endemism, the result of an interplay between colonization opportunities on islands and effective oceanic barriers among them. A relatively small percentage of the biota is represented by ‘widespread species,’ presumably taxa for which oceanic barriers are ineffective. Few studies have explored in detail the genetic structure of widespread Caribbean taxa. The cobweb spiderSpintharus flavidusHentz, 1850 (Theridiidae) is one of two describedSpintharusspecies and is unique in being widely distributed from northern N. America to Brazil and throughout the Caribbean. As a taxonomic hypothesis,Spintharus “flavidus”predicts maintenance of gene flow among Caribbean islands, a prediction that seems contradicted by knownS. flavidusbiology, which suggests limited dispersal ability. As part of an extensive survey of Caribbean arachnids (project CarBio), we conducted the first molecular phylogenetic analysis ofS. flaviduswith the primary goal of testing the ‘widespread species’ hypothesis. Our results, while limited to three molecular loci, reject the hypothesis of a single widespread species. Instead this lineage seems to represent a radiation with at least 16 species in the Caribbean region. Nearly all are short range endemics with several distinct mainland groups and others are single island endemics. While limited taxon sampling, with a single specimenmore »from S. America, constrains what we can infer about the biogeographical history of the lineage, clear patterns still emerge. Consistent with limited overwater dispersal, we find evidence for a single colonization of the Caribbean about 30 million years ago, coinciding with the timing of the GAARLandia landbridge hypothesis. In sum,S. “flavidus”is not a single species capable of frequent overwater dispersal, but rather a 30 my old radiation of single island endemics that provides preliminary support for a complex and contested geological hypothesis.

    « less
  4. All life on earth is linked by a shared evolutionary history. Even before Darwin developed the theory of evolution, Linnaeus categorized types of organisms based on their shared traits. We now know these traits derived from these species’ shared ancestry. This evolutionary history provides a natural framework to harness the enormous quantities of biological data being generated today. The Open Tree of Life project is a collaboration developing tools to curate and share evolutionary estimates (phylogenies) covering the entire tree of life (Hinchliff et al. 2015, McTavish et al. 2017). The tree is viewable at, and the data is all freely available online. The taxon identifiers used in the Open Tree unified taxonomy (Rees and Cranston 2017) are mapped to identifiers across biological informatics databases, including the Global Biodiversity Information Facility (GBIF), NCBI, and others. Linking these identifiers allows researchers to easily unify data from across these different resources (Fig. 1). Leveraging a unified evolutionary framework across the diversity of life provides new avenues for integrative wide scale research. Downstream tools, such as R packages developed by the R OpenSci foundation (rotl, rgbif) (Michonneau et al. 2016, Chamberlain 2017) and others tools (Revell 2012), make accessing and combining thismore »information straightforward for students as well as researchers (e.g. Figure 1. Example linking phylogenetic relationships accessed from the Open Tree of Life with specimen location data from Global Biodiversity Information Facility. For example, a recent publication by Santorelli et al. 2018 linked evolutionary information from Open Tree with species locality data gathered from a local field study as well as GBIF species location records to test a river-barrier hypothesis in the Amazon. By combining these data, the authors were able test a widely held biogeographic hypothesis across 1952 species in 14 taxonomic groups, and found that a river that had been postulated to drive endemism, was in fact not a barrier to gene flow. However, data provenance and taxonomic name reconciliation remain key hurdles to applying data from these large digital biodiversity and evolution community resources to answering biological questions. In the Amazonian river analysis, while they leveraged use of GBIF records as a secondary check on their species records, they relied on their an intensive local field study for their major conclusions, and preferred taxon specific phylogenetic resources over Open Tree where they were available (Santorelli et al. 2018). When Li et al. 2018 assessed large scale phylogenetic approaches, including Open Tree, for measuring community diversity, they found that synthesis phylogenies were less resolved than purpose-built phylogenies, but also found that these synthetic phylogenies were sufficient for community level phylogenetic diversity analyses. Nonetheless, data quality concerns have limited adoption of analyses data from centralized resources (McTavish et al. 2017). Taxonomic name recognition and reconciliation across databases also remains a hurdle for large scale analyses, despite several ongoing efforts to improve taxonomic interoperability and unify taxonomies, such at Catalogue of Life + (Bánki et al. 2018). In order to support innovative science, large scale digital data resources need to facilitate data linkage between resources, and address researchers' data quality and provenance concerns. I will present the model that the Open Tree of Life is using to provide evolutionary data at the scale of the entire tree of life, while maintaining traceable provenance to the publications and taxonomies these evolutionary relationships are inferred from. I will discuss the hurdles to adoption of these large scale resources by researchers, as well as the opportunities for new research avenues provided by the connections between evolutionary inferences and biodiversity digital databases.« less
  5. Background

    The páramo ecosystem, located above the timberline in the tropical Andes, has been the setting for some of the most dramatic plant radiations, and it is one of the world’s fastest evolving and most diverse high-altitude ecosystems. Today 144+ species of frailejones (subtribe Espeletiinae Cuatrec., Asteraceae) dominate the páramo. Frailejones have intrigued naturalists and botanists, not just for their appealing beauty and impressive morphological diversity, but also for their remarkable adaptations to the extremely harsh environmental conditions of the páramo. Previous attempts to reconstruct the evolutionary history of this group failed to resolve relationships among genera and species, and there is no agreement regarding the classification of the group. Thus, our goal was to reconstruct the phylogeny of the frailejones and to test the influence of the geography on it as a first step to understanding the patterns of radiation of these plants.


    Field expeditions in 70 páramos of Colombia and Venezuela resulted in 555 collected samples from 110 species. Additional material was obtained from herbarium specimens. Sequence data included nrDNA (ITS and ETS) and cpDNA (rpl16), for an aligned total of 2,954 bp. Fragment analysis was performed with AFLP data using 28 primer combinations and yielding 1,665 fragments. Phylogeniesmore »based on sequence data were reconstructed under maximum parsimony, maximum likelihood and Bayesian inference. The AFLP dataset employed minimum evolution analyses. A Monte Carlo permutation test was used to infer the influence of the geography on the phylogeny.


    Phylogenies reconstructed suggest that most genera are paraphyletic, but the phylogenetic signal may be misled by hybridization and incomplete lineage sorting. A tree with all the available molecular data shows two large clades: one of primarily Venezuelan species that includes a few neighboring Colombian species; and a second clade of only Colombian species. Results from the Monte Carlo permutation test suggests a very strong influence of the geography on the phylogenetic relationships. Venezuelan páramos tend to hold taxa that are more distantly-related to each other than Colombian páramos, where taxa are more closely-related to each other.


    Our data suggest the presence of two independent radiations: one in Venezuela and the other in Colombia. In addition, the current generic classification will need to be deeply revised. Analyses show a strong geographic structure in the phylogeny, with large clades grouped in hotspots of diversity at a regional scale, and in páramo localities at a local scale. Differences in the degrees of relatedness between sympatric species of Venezuelan and Colombian páramos may be explained because of the younger age of the latter páramos, and the lesser time for speciation of Espeletiinae in them.

    « less