We provide formal definitions of \emph{degree of blameworthiness} and \emph{intention} relative to an \emph{epistemic state} (a probability over causal models and a utility function on outcomes). These, together with a definition of actual causality, provide the key ingredients for moral responsibility judgments. We show that these definitions give insight into commonsense intuitions in a variety of puzzling cases from the literature. 
                        more » 
                        « less   
                    
                            
                            A causal analysis of harm, \emph{Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022)}, 2022 (with S. Beckers and H. Chockler).
                        
                    
    
            As autonomous systems rapidly become ubiquitous, there is a growing need for a legal and regulatory framework that addresses when and how such a system harms someone. There have been several attempts within the philosophy literature to define harm, but none of them has proven capable of dealing with the many examples that have been presented, leading some to suggest that the notion of harm should be abandoned and ``replaced by more well-behaved notions''. As harm is generally something that is caused, most of these definitions have involved causality at some level. Yet surprisingly, none of them makes use of causal models and the definitions of actual causality that they can express. In this paper we formally define a qualitative notion of harm that uses causal models and is based on a well-known definition of actual causality due to Halpern and Pearl. The key features of our definition are that it is based on contrastive causation and uses a default utility to which the utility of actual outcomes is compared. We show that our definition is able to handle the examples from the literature, and illustrate its importance for reasoning about situations involving autonomous systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1703846
- PAR ID:
- 10414206
- Date Published:
- Journal Name:
- Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS)
- Page Range / eLocation ID:
- 2365--2376
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)Recent work highlights the role of causality in designing equitable decision-making algorithms. It is not immediately clear, however, how existing causal conceptions of fairness relate to one another, or what the consequences are of using these definitions as design principles. Here, we first assemble and categorize popular causal definitions of algorithmic fairness into two broad families: (1) those that constrain the effects of decisions on counterfactual disparities; and (2) those that constrain the effects of legally protected characteristics, like race and gender, on decisions. We then show, analytically and empirically, that both families of definitions almost always—in a measure theoretic sense—result in strongly Pareto dominated decision policies, meaning there is an alternative, unconstrained policy favored by every stakeholder with preferences drawn from a large, natural class. For example, in the case of college admissions decisions, policies constrained to satisfy causal fairness definitions would be disfavored by every stakeholder with neutral or positive preferences for both academic preparedness and diversity. Indeed, under a prominent definition of causal fairness, we prove the resulting policies require admitting all students with the same probability, regardless of academic qualifications or group membership. Our results highlight formal limitations and potential adverse consequences of common mathematical notions of causal fairness.more » « less
- 
            Fairness is increasingly recognized as a critical component of machine learning systems. However, it is the underlying data on which these systems are trained that often reflect discrimination, suggesting a database repair problem. Existing treatments of fairness rely on statistical correlations that can be fooled by statistical anomalies, such as Simpson's paradox. Proposals for causality-based definitions of fairness can correctly model some of these situations, but they require specification of the underlying causal models. In this paper, we formalize the situation as a database repair problem, proving sufficient conditions for fair classifiers in terms of admissible variables as opposed to a complete causal model. We show that these conditions correctly capture subtle fairness violations. We then use these conditions as the basis for database repair algorithms that provide provable fairness guarantees about classifiers trained on their training labels. We evaluate our algorithms on real data, demonstrating improvement over the state of the art on multiple fairness metrics proposed in the literature while retaining high utility.more » « less
- 
            We show that it is possible to understand and identify a decision maker’s subjective causal judgements by observing her preferences over interventions. Following Pearl [2000, DOI: doi.org/10.1017/S0266466603004109 ], we represent causality using causal models (also called structural equations models), where the world is described by a collection of variables, related by equations. We show that if a preference relation over interventions satisfies certain axioms (related to standard axioms regarding counterfactuals), then we can define (i) a causal model, (ii) a probability capturing the decision-maker’s uncertainty regarding the external factors in the world and (iii) a utility on outcomes such that each intervention is associated with an expected utility and such that intervention A is preferred to B iff the expected utility of A is greater than that of B. In addition, we characterize when the causal model is unique. Thus, our results allow a modeler to test the hypothesis that a decision maker’s preferences are consistent with some causal model and to identify causal judgements from observed behavior.more » « less
- 
            Differential privacy is a mathematical framework for developing statistical computations with provable guarantees of privacy and accuracy. In contrast to the privacy component of differential privacy, which has a clear mathematical and intuitive meaning, the accuracy component of differential privacy does not have a generally accepted definition; accuracy claims of differential privacy algorithms vary from algorithm to algorithm and are not instantiations of a general definition. We identify program discontinuity as a common theme in existingad hocdefinitions and introduce an alternative notion of accuracy parametrized by, what we call, — the of an inputxw.r.t. a deterministic computationfand a distanced, is the minimal distanced(x,y) over allysuch thatf(y)≠f(x). We show that our notion of accuracy subsumes the definition used in theoretical computer science, and captures known accuracy claims for differential privacy algorithms. In fact, our general notion of accuracy helps us prove better claims in some cases. Next, we study the decidability of accuracy. We first show that accuracy is in general undecidable. Then, we define a non-trivial class of probabilistic computations for which accuracy is decidable (unconditionally, or assuming Schanuel’s conjecture). We implement our decision procedure and experimentally evaluate the effectiveness of our approach for generating proofs or counterexamples of accuracy for common algorithms from the literature.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    