skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strategic play by resource-bounded agents in security games
Many studies have shown that humans are ``predictably irrational'': they do not act in a fully rational way, but their deviations from rational behavior are quite systematic. Our goal is to see the extent to which we can explain and justify these deviations as the outcome of rational but resource-bounded agents doing as well as they can, given their limitations. We focus on the well-studied ranger-poacher game, where rangers are trying to protect a number of sites from poaching. We capture the computational limitations by modeling the poacher and the ranger as probabilistic finite automata (PFAs). We show that, with sufficiently large memory, PFAs learn to play the Nash equilibrium (NE) strategies of the game and achieve the NE utility. However, if we restrict the memory, we get more ``human-like'' behaviors, such as probability matching (i.e., visiting sites in proportion to the probability of a rhino being there), and avoiding sites where there was a bad outcome (e.g., the poacher was caught by the ranger), that we also observed in experiments conducted on Amazon Mechanical Turk. Interestingly, we find that adding human-like behaviors such as probability matching and overweighting significant events (like getting caught) actually improves performance, showing that this seemingly irrational behavior can be quite rational.  more » « less
Award ID(s):
1703846
PAR ID:
10414208
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 22nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    While traditional economics assumes that humans are fully rational agents who always maximize their expected utility, in practice, we constantly observe apparently irrational behavior. One explanation is that people have limited computational power, so that they are, quite rationally, making the best decisions they can, given their computational limitations. To test this hypothesis, we consider the multi-armed bandit (MAB) problem. We examine a simple strategy for playing an MAB that can be implemented easily by a probabilistic finite automaton (PFA). Roughly speaking, the PFA sets certain expectations, and plays an arm as long as it meets them. If the PFA has sufficiently many states, it performs near-optimally. Its performance degrades gracefully as the number of states decreases. Moreover, the PFA acts in a ``human-like'' way, exhibiting a number of standard human biases, like an optimism bias and a negativity bias. 
    more » « less
  2. While traditional economics assumes that humans are fully rational agents who always maximize their expected utility, in practice, we constantly observe apparently irrational behavior. One explanation is that people have limited computational power, so that they are, quite rationally, making the best decisions they can, given their computational limitations. To test this hypothesis, we consider the multi-armed bandit (MAB) problem. We examine a simple strategy for playing an MAB that can be implemented easily by a probabilistic finite automaton (PFA). Roughly speaking, the PFA sets certain expectations, and plays an arm as long as it meets them. If the PFA has sufficiently many states, it performs near-optimally. Its performance degrades gracefully as the number of states decreases. Moreover, the PFA acts in a “human-like” way, exhibiting a number of standard human biases, like an optimism bias and a negativity bias. 
    more » « less
  3. The human ability to deceive others and detect deception has long been tied to theory of mind. We make a stronger argument: in order to be adept liars – to balance gain (i.e. maximizing their own reward) and plausibility (i.e. maintaining a realistic lie) – humans calibrate their lies under the assumption that their partner is a rational, utility-maximizing agent. We develop an adversarial recursive Bayesian model that aims to formalize the behaviors of liars and lie detectors. We compare this model to (1) a model that does not perform theory of mind computations and (2) a model that has perfect knowledge of the opponent’s behavior. To test these models, we introduce a novel dyadic, stochastic game, allowing for quantitative measures of lies and lie detection. In a second experiment, we vary the ground truth probability. We find that our rational models qualitatively predict human lying and lie detecting behavior better than the non-rational model. Our findings suggest that humans control for the extremeness of their lies in a manner reflective of rational social inference. These findings provide a new paradigm and formal framework for nuanced quantitative analysis of the role of rationality and theory of mind in lying and lie detecting behavior. 
    more » « less
  4. Significant advancements have occurred in the application of Large Language Models (LLMs) for social simulations. Despite this, their abilities to perform teaming in task-oriented social events are underexplored. Such capabilities are crucial if LLMs are to effectively mimic human-like social behaviors and form efficient teams to solve tasks. To bridge this gap, we introduce MetaAgents, a social simulation framework populated with LLM-based agents. MetaAgents facilitates agent engagement in conversations and a series of decision making within social contexts, serving as an appropriate platform for investigating interactions and interpersonal decision-making of agents. In particular, we construct a job fair environment as a case study to scrutinize the team assembly and skill-matching behaviors of LLM-based agents. We take advantage of both quantitative metrics evaluation and qualitative text analysis to assess their teaming abilities at the job fair. Our evaluation demonstrates that LLM-based agents perform competently in making rational decisions to develop efficient teams. However, we also identify limitations that hinder their effectiveness in more complex team assembly tasks. Our work provides valuable insights into the role and evolution of LLMs in task-oriented social simulations. 
    more » « less
  5. This work is motivated by an article by Wang, Casati, and Prosen[Phys. Rev. E vol. 89, 042918 (2014)] devoted to a study of ergodicityin two-dimensional irrational right-triangular billiards. Numericalresults presented there suggest that these billiards are generally notergodic. However, they become ergodic when the billiard angle is equalto \pi/2 π / 2 times a Liouvillian irrational, morally a class of irrational numberswhich are well approximated by rationals. In particular, Wang etal. study a special integer counter that reflects the irrationalcontribution to the velocity orientation; they conjecture that thiscounter is localized in the generic case, but grows in the Liouvilliancase. We propose a generalization of the Wang-Casati-Prosen counter:this generalization allows to include rational billiards intoconsideration. We show that in the case of a 45°\!\!:\!45°\!\!:\!90° 45 ° : 45 ° : 90 ° billiard, the counter grows indefinitely, consistent with theLiouvillian scenario suggested by Wang et al. 
    more » « less