skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Substrate-Induced Modulation of Quantum Emitter Properties in 2D Hexagonal Boron Nitride: Implications for Defect-Based Single Photon Sources in 2D Layers
Award ID(s):
1752840 2231278
PAR ID:
10414223
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACS Applied Nano Materials
Volume:
6
Issue:
5
ISSN:
2574-0970
Page Range / eLocation ID:
3446 to 3452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent decades, two-dimensional materials (2D) such as graphene, black and blue phosphorenes, transition metal dichalcogenides (e.g., WS2 and MoS2), and h-BN have received illustrious consideration due to their promising properties. Increasingly, nanomaterial thermal properties have become a topic of research. Since nanodevices have to constantly be further miniaturized, thermal dissipation at the nanoscale has become one of the key issues in the nanotechnology field. Different techniques have been developed to measure the thermal conductivity of nanomaterials. A brief review of 2D material developments, thermal conductivity concepts, simulation methods, and recent research in heat conduction measurements is presented. Finally, recent research progress is summarized in this article. 
    more » « less
  2. null (Ed.)
    The discovery and control of new phases of matter is a central endeavour in materials research. The emergence of atomically thin 2D materials, such as transition-metal dichalcogenides and monochalcogenides, has allowed the study of diffusive, displacive and quantum phase transitions in 2D. In this Review, we discuss the thermodynamic and kinetic features of 2D phase transitions arising from dimensionality confinement, elasticity, electrostatics, defects and chemistry unique to 2D materials. We highlight polymorphic, ferroic and high-temperature diffusive phase changes, and examine the technological potential of controlled 2D phase transitions. Finally, we give an outlook to future opportunities in the study and applications of 2D phase transitions, and identify key challenges that remain to be addressed. 
    more » « less