skip to main content


Title: Healing Se Vacancies in Bi 2 Se 3 by Ambient Gases
Award ID(s):
1752840
NSF-PAR ID:
10414228
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
126
Issue:
39
ISSN:
1932-7447
Page Range / eLocation ID:
16877 to 16884
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract

    Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.

     
    more » « less
  3. Abstract

    Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.

     
    more » « less
  4. Abstract

    Addition of the potassium dichalcogenidodiphenylphosphinate salts, KE2PPh2(E=S, Se), to either the THF solvate of vanadium(III) chloride or unsolvated chromium(III) chloride results in rapid ligand substitution and the formation of a series of closely‐related trivalent, neutral mononuclear complexes, M(E2PPh2)3(M=V, Cr; E=S, Se), isolated in modest to good yield. The metal dichalcogenidophosphinate complexes reported herein were characterized by IR, UV‐vis, and1H NMR spectroscopies, and their solid‐state molecular structures were determined by single‐crystal X‐ray crystallography. Importantly, the comparative analysis includes the structural and spectroscopic studies of two rare V(III) dithio‐ and diseleno‐phosphinate VE6cores, as well as, two previously known CrE6analogues. In the solid‐state the title complexes exhibit trigonal distortion from octahedral with torsion angles ranging from 43(2) to 50.3(6)° and structural parameters consistent with ligation of progressively ‘softer’ chalcogen‐donors.

     
    more » « less