To assess coastal erosion dynamics during the 2018 and 2019 open water seasons at Drew Point, Beaufort Sea Coast, Alaska, we generated orthomosaic images and associated digital surface models from 9 unmanned aerial vehicle (UAV) surveys. UAV surveys were collected on 24 July 2018, 29 July 2018, 3 August 2018, 30 September 2018, 2 August 2019, 6 August 2019, 10 August 2019, 12 August 2019 and 15 August 2019. The digital surface models elevations are at relative sea level (2.2 meters (m) higher than local ellipsoid heights) and have been cleaned up (i.e. noise from waves removed) to only include the coast edge, ~125 m inland from the coast and toppled permafrost blocks in front of the bluff edge. 
                        more » 
                        « less   
                    
                            
                            The broad scale impact of climate change on planning aerial wildlife surveys with drone-based thermal cameras
                        
                    
    
            Abstract Helicopters used for aerial wildlife surveys are expensive, dangerous and time consuming. Drones and thermal infrared cameras can detect wildlife, though the ability to detect individuals is dependent on weather conditions. While we have a good understanding of local weather conditions, we do not have a broad-scale assessment of ambient temperature to plan drone wildlife surveys. Climate change will affect our ability to conduct thermal surveys in the future. Our objective was to determine optimal annual and daily time periods to conduct surveys. We present a case study in Texas, (United States of America [USA]) where we acquired and compared average monthly temperature data from 1990 to 2019, hourly temperature data from 2010 to 2019 and projected monthly temperature data from 2021 to 2040 to identify areas where surveys would detect a commonly studied ungulate (white-tailed deer [ Odocoileus virginianus ]) during sunny or cloudy conditions. Mean temperatures increased when comparing the 1990–2019 to 2010–2019 periods. Mean temperatures above the maximum ambient temperature in which white-tailed deer can be detected increased in 72, 10, 10, and 24 of the 254 Texas counties in June, July, August, and September, respectively. Future climate projections indicate that temperatures above the maximum ambient temperature in which white-tailed deer can be detected will increase in 32, 12, 15, and 47 counties in June, July, August, and September, respectively when comparing 2010–2019 with 2021–2040. This analysis can assist planning, and scheduling thermal drone wildlife surveys across the year and combined with daily data can be efficient to plan drone flights. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1914745
- PAR ID:
- 10414231
- Publisher / Repository:
- scientific reports
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            To assess coastal erosion dynamics during the entire 2018 and 2019 open water seasons at Drew Point, Beaufort Sea Coast, Alaska, we derived 16 coastlines position using satellite, airborne and unmanned aerial vehicle (UAV) sensors. Sensors with associated image dates are: Worldview 1 imagery ©Maxar (14 April 2019), Worldview 2 panchromatic imagery ©Maxar (5 April 2019, 26 September 2019, and 3 April 2020); Modular Aerial Camera System (MACS-Polar) during the Polar-6 airborne operations during the ThawTrend-Air campaign (13 July 2019, 23 July, 2019, and 30 July 2019) and DJI Phantom 4 UAV surveys (24 July 2018, 29 July 2018, 3 August 2018, 30 September 2018, 2 August 2019, 6 August 2019, 10 August 2019, 12 August 2019 and 15 August 2019). Pixel resolution for the satellite, airborne and UAV imagery was 50 cm (Worldview 1), 46 centimeter (cm) (Worldview 2), 10 cm and 4 cm, respectively. The satellite-image derived coastlines span the 9 kilometer (Km) segment described in Jones et al. (2018; DOI: 10.1088/1748-9326/aae471), while the other coastline spans a 1.5 Km sub-section of the study area that includes the coastline, part of inland coastal area (~125 meters (m)) and fallen toppled permafrost blocks in front of the bluff. Fallen toppled permafrost blocks were digitized using the airborne and UAV images. The satellite imagery was too coarse to digitize blocks. All datasets are in WGS84 UTM Zone 5N.more » « less
- 
            This archive contains firn temperature data collected at two sites in the western Greenland Ice Sheet percolation zone. The sites, T3 and Crawford Point (CP), are located along the Expéditions Glaciologiques Internationales au Groenland (EGIG) line. The data are time series of firn temperature measured in boreholes drilled to 100 m depth. The boreholes were drilled by hot water methods. The CP measurements span the period June to August, 2019. This borehole was drilled in 2018, so the temperature profile had fully recovered from the drilling thermal disturbance by the start of the time series. The T3 data span the period June 2019 to September 2021. This borehole was drilled in June 2019, so the time series of measurements includes the thermal recovery from drilling (several months) and two subsequent years. The dataset was collected as part of projects funded by the U.S. National Science Foundation. These measurements are associated with additional datasets collected as part of a NSF Arctic Observing Network project, and include measurements at multiple sites on the EGIG line of firn temperature and firn density/ice content.more » « less
- 
            Applegate, Roger (Ed.)Abstract - Odocoileus virginianus (White-tailed Deer) are social animals that thrive in rural and urban settings. Scraping behavior is an olfactory reproductive communication used by White-tailed Deer to establish breeding networks. Male scraping is a complex scent-marking behavior which advertises sociosexual status and location to potential females as well as to competing males. Female scraping behavior is thought to be an estrus signal alerting males during times of optimal fertility. This study describes a new method to examine White-tailed Deer mating systems using social network analyses of scraping behavior using an urban population of White-tailed Deer as a model. First, we validated the scraping behavior at our study site in Tougaloo, MS, during the 2019–2020 breeding season. Using remote monitoring, we continuously documented scraping behaviors over 8 different scrape-site locations and found similar behavioral, temporal, and spatial patterns in our urban breeding network as reported in rural and captive deer studies. Next, we describe methods detailing how social network analyses can reveal sociality, dominance, importance, and social structure within male scraping networks. Using centrality measures, we were able to rank dominant male influencers, anticipate social conflict among rivals, and made predictions regarding the spread of communicable diseases through a male scraping network. We also detail network analyses combining both male and female scraping behavior to reveal a glimpse into the complexity of breeding networks. Using network measures, we were able to rank males based on competitiveness and female preference. Lastly, we generated a theoretical breeding network to explore female sociability, competitiveness, preference, and mate choice. Taken together, this work describes a new method using scraping network analysis to investigate the complexity of White-tailed Deer breeding networks. This work also demonstrates the future applications of this method for predicting the spread of communicable diseases and for predicting mate selection within White-tailed Deer mating systems.more » « less
- 
            Abstract Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022–September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    