skip to main content


Title: Synthetic mucus biomaterials for antimicrobial peptide delivery
Abstract

Despite the promise of antimicrobial peptides (AMPs) as treatments for antibiotic‐resistant infections, their therapeutic efficacy is limited due to the rapid degradation and low bioavailability of AMPs. To address this, we have developed and characterized a synthetic mucus (SM) biomaterial capable of delivering LL37 AMPs and enhancing their therapeutic effect. LL37 is an AMP that exhibits a wide range of antimicrobial activity against bacteria, includingPseudomonas aeruginosa. LL37 loaded SM hydrogels demonstrated controlled release with 70%–95% of loaded LL37 over 8 h due to charge‐mediated interactions between mucins and LL37 AMPs. Compared to treatment with LL37 alone where antimicrobial activity was reduced after 3 h, LL37‐SM hydrogels inhibitedP. aeruginosa(PAO1) growth over 12 h. LL37‐SM hydrogel treatment reduced PAO1 viability over 6 h whereas a rebound in bacterial growth was observed when treated with LL37 only. These data demonstrate LL37‐SM hydrogels enhance antimicrobial activity by preserving LL37 AMP activity and bioavailability. Overall, this work establishes SM biomaterials as a platform for enhanced AMP delivery for antimicrobial applications.

 
more » « less
NSF-PAR ID:
10414386
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Volume:
111
Issue:
10
ISSN:
1549-3296
Format(s):
Medium: X Size: p. 1616-1626
Size(s):
["p. 1616-1626"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Pseudomonas aeruginosa utilizes the quorum sensing (QS) system to strategically coordinate virulence and biofilm formation. Targeting QS pathways may be a potential anti-infective approach to treat P. aeruginosa infections. In the present study, we define cephalosporins’ anti-QS activity using Chromobacterium violaceum CV026 for screening and QS-regulated mutants of P. aeruginosa for validation. We quantified the effects of three cephalosporins, cefepime, ceftazidime, and ceftriaxone, on (1) pyocyanin production using spectrophotometric assay, (2) bacterial motility using agar plate assay, and (3) biofilm formation using scanning electron microscopy. We also studied isogenic QS mutant strains of PAO1 (Δ lasR ,Δ rhlR ,Δ pqsA , and Δ pqsR) to compare and distinguish QS-mediated effects on the motility phenotypes and bacterial growth with and without sub-MIC concentrations of antibiotics. Results showed that cephalosporins have anti-QS activity and reduce bacterial motility, pyocyanin production, and biofilm formation for CV026 and PAO1. Also, sub-MICs of cefepime increased aminoglycosides’ antimicrobial activity against P. aeruginosa PAO1, suggesting the advantage of combined anti-QS and antibacterial treatment. To correlate experimentally observed anti-QS effects with the interactions between cephalosporins and QS receptors, we performed molecular docking with ligand binding sites of quorum sensing receptors using Autodock Vina. Molecular docking predicted cephalosporins’ binding affinities to the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). To validate our results using an infection model, we quantified the survival rate of C aenorhabditis elegans following P. aeruginosa PAO1 challenge at concentrations less than the minimum inhibitory concentration (MIC) of antibiotics. C. elegans infected with PAO1 without antibiotics showed 0% survivability after 72 h. In contrast, PAO1-infected C. elegans showed 65 ± 5%, 58 ± 4%, and 49 ± 8% survivability after treatment with cefepime, ceftazidime, and ceftriaxone, respectively. We determined the survival rates of C. elegans infected by QS mutant strains Δ lasR (32 ± 11%), Δ rhlR (27 ± 8%), Δ pqsA (27 ± 10%), and Δ pqsR (37 ± 6%), which suggest essential role of QS system in virulence. In summary, cephalosporins at sub-MIC concentrations show anti-QS activity and enhance the antibacterial efficacy of aminoglycosides, a different class of antibiotics. Thus, cephalosporins at sub-MIC concentrations in combination with other antibiotics are potential candidates for developing therapies to combat infections caused by P. aeruginosa. 
    more » « less
  2. ABSTRACT Plant-derived aldehydes are constituents of essential oils that possess broad-spectrum antimicrobial activity and kill microorganisms without promoting resistance. In our previous study, we incorporated p -anisaldehyde from star anise into a polymer network called proantimicrobial networks via degradable acetals (PANDAs) and used it as a novel drug delivery platform. PANDAs released p -anisaldehyde upon a change in pH and humidity and controlled the growth of the multidrug-resistant pathogen Pseudomonas aeruginosa PAO1. In this study, we identified the cellular pathways targeted by p -anisaldehyde by generating 10,000 transposon mutants of PAO1 and screened them for hypersensitivity to p -anisaldehyde. To improve the antimicrobial efficacy of p -anisaldehyde, we combined it with epigallocatechin gallate (EGCG), a polyphenol from green tea, and demonstrated that it acts synergistically with p -anisaldehyde in killing P. aeruginosa . We then used transcriptome sequencing to profile the responses of P. aeruginosa to p -anisaldehyde, EGCG, and their combination. The exposure to p -anisaldehyde altered the expression of genes involved in modification of the cell envelope, membrane transport, drug efflux, energy metabolism, molybdenum cofactor biosynthesis, and the stress response. We also demonstrate that the addition of EGCG reversed many p -anisaldehyde-coping effects and induced oxidative stress. Our results provide insight into the antimicrobial activity of p -anisaldehyde and its interactions with EGCG and may aid in the rational identification of new synergistically acting combinations of plant metabolites. Our study also confirms the utility of the thiol-ene polymer platform for the sustained and effective delivery of hydrophobic and volatile antimicrobial compounds. IMPORTANCE Essential oils (EOs) are plant-derived products that have long been exploited for their antimicrobial activities in medicine, agriculture, and food preservation. EOs represent a promising alternative to conventional antibiotics due to their broad-range antimicrobial activity, low toxicity to human commensal bacteria, and capacity to kill microorganisms without promoting resistance. Despite the progress in the understanding of the biological activity of EOs, our understanding of many aspects of their mode of action remains inconclusive. The overarching aim of this work was to address these gaps by studying the molecular interactions between an antimicrobial plant aldehyde and the opportunistic human pathogen Pseudomonas aeruginosa . The results of this study identify the microbial genes and associated pathways involved in the response to antimicrobial phytoaldehydes and provide insights into the molecular mechanisms governing the synergistic effects of individual constituents within essential oils. 
    more » « less
  3. Abstract

    Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host–pathogen interactions. The amphibian pathogen,Batrachochytrium dendrobatidis(Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown.

    The aim of this study was to examine whether host immune and microbiome defences againstBdcorrespond with infection risk and seasonal fluctuations in temperature and humidity.

    Over the course of a year, five populations of Southern leopard frogs (Rana[Lithobates]sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness ofBdgrowth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibitBdgrowth in vitro were used as an estimate of predicted anti‐Bdfunction of the skin microbiome.

    Batrachochytrium dendrobatidisdynamics followed the expected seasonal fluctuations—peaks in cooler months—which coincided with when host mucosal defences were most potent againstBd. Specifically, the concentration and expression of stored AMPs cycled synchronously withBddynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibitBdgrowth was greatest when risk ofBdinfection was highest.

    We interpret the increase in peptide storage in the fall and the shift to a more anti‐Bdmicrobiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool‐adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality ofBdin this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature.

     
    more » « less
  4. Abstract Objectives

    To assess the ability of oxyclozanide to enhance tobramycin killing of Pseudomonas aeruginosa biofilms and elucidate its mechanism of action.

    Methods

    Twenty-four hour biofilms formed by the P. aeruginosa strain PAO1 and cystic fibrosis (CF) isolates were tested for susceptibility to oxyclozanide and tobramycin killing using BacTiter-Glo™ and cfu. Biofilm dispersal was measured using crystal violet staining. Membrane potential and permeabilization were quantified using DiOC2(3) and TO-PRO-3, respectively.

    Results

    Here we show that the ionophore anthelmintic oxyclozanide, combined with tobramycin, significantly increased killing of P. aeruginosa biofilms over each treatment alone. This combination also significantly accelerated the killing of cells within biofilms and stationary phase cultures and it was effective against 4/6 CF clinical isolates tested, including a tobramycin-resistant strain. Oxyclozanide enhanced the ability of additional aminoglycosides and tetracycline to kill P. aeruginosa biofilms. Finally, oxyclozanide permeabilized cells within the biofilm, reduced the membrane potential and increased tobramycin accumulation within cells of mature P. aeruginosa biofilms.

    Conclusions

    Oxyclozanide enhances aminoglycoside and tetracycline activity against P. aeruginosa biofilms by reducing membrane potential, permeabilizing cells and enhancing tobramycin accumulation within biofilms. We propose that oxyclozanide counteracts the adaptive resistance response of P. aeruginosa to aminoglycosides, increasing both their maximum activity and rate of killing. As oxyclozanide is widely used in veterinary medicine for the treatment of parasitic worm infections, this combination could offer a new approach for the treatment of biofilm-based P. aeruginosa infections, repurposing oxyclozanide as an anti-biofilm agent.

     
    more » « less
  5. Abstract

    The colonization of biomedical surfaces by bacterial biofilms is concerning because these microorganisms display higher antimicrobial resistance in biofilms than in liquid cultures. Developing antimicrobial coatings that can be easily applied to medically‐relevant complex‐shaped objects, such as implants and surgical instruments, is an important and challenging research direction. This work reports the preparation of antibacterial surfaces via the electrodeposition of a conformal hydrogel of self‐assembling cationic peptide‐amphiphiles (PAs). Hydrogels of three PAs are electrodeposited: C16K2, C16K3, and C18K2, where Cnis an alkyl chain ofnmethylene groups and Kmis an oligopeptide ofmlysines. The processing variables (electrodeposition time, potential, pH, salt concentration, agitation) enable fine control of film thickness, demonstrating the flexibility of the method and allowing to unravel the mechanisms underlying electrodeposition. The electrochemically prepared hydrogels inhibit the growth ofStaphylococcus aureus,Escherichia coli, andPseudomonas aeruginosain agar plates, and prevent the formation of biofilms ofAcinetobacter baumanniiandP. aeruginosaand the formation ofA. baumanniicolonies in solid media. C16K2and C16K3hydrogels outperform the antimicrobial activity of those of C18K2while maintaining good compatibility with human cells.

     
    more » « less