skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Discovery of Active and Selective Metal‐Nitrogen‐Graphene Catalysts for Electrooxidation of Water to H 2 O 2
Abstract A direct electrosynthesis of H2O2from either O2or H2O is an attractive strategy to replace the energy‐intensive industrial anthraquinone process. Two‐electron water oxidation reaction (2e‐WOR) offers several advantages over the oxygen reduction reaction such as better mass transfer due to the absence of gas‐phase reactants. However, 2e‐WOR is a more challenging and less studied process with only a handful of metal oxides exhibiting reasonable activity/selectivity properties. Herein, we employ density‐functional‐theory calculations to screen a variety of metal‐nitrogen‐graphene structures for 2e‐WOR. As a consequence of scaling between the adsorption energies of reaction intermediates, we determine a linear relation between selectivities for the first and second reaction steps of 2e‐WOR, viz. that if selectivity toward adsorbed OH is improved, then selectivity toward H2O2at the subsequent step is decreased. We also find that selectivity and activity are linearly scaled in such a way that a higher activity (i. e., a lower overpotential) leads to a lower selectivity for the H2O2formation step. Based on the obtained results several chemistries, e. g., containing NiNx−C moieties, are predicted to rival the best‐performing metal oxides such as ZnO and CaSnO3in terms of combination of their activity/selectivity characteristics for 2e‐WOR.  more » « less
Award ID(s):
1941204
PAR ID:
10414404
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemCatChem
Volume:
15
Issue:
10
ISSN:
1867-3880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrochemical two-electron water oxidation reaction (2e-WOR) has drawn significant attention as a promising process to achieve the continuous on-site production of hydrogen peroxide (H2O2). However, compared to the cathodic H2O2generation, the anodic 2e-WOR is more challenging to establish catalysts due to the severe oxidizing environment. In this study, we combine density functional theory (DFT) calculations with experiments to discover a stable and efficient perovskite catalyst for the anodic 2e-WOR. Our theoretical screening efforts identify LaAlO3perovskite as a stable, active, and selective candidate for catalyzing 2e-WOR. Our experimental results verify that LaAlO3achieves an overpotential of 510 mV at 10 mA cm−2in 4 M K2CO3/KHCO3, lower than those of many reported metal oxide catalysts. In addition, LaAlO3maintains a stable H2O2Faradaic efficiency with only a 3% decrease after 3 h at 2.7 V vs. RHE. This computation-experiment synergistic approach introduces another effective direction to discover promising catalysts for the harsh anodic 2e-WOR towards H2O2
    more » « less
  2. Abstract Electrochemical water oxidation reaction (WOR) to hydrogen peroxide (H 2 O 2 ) via a 2e − pathway provides a sustainable H 2 O 2 synthetic route, but is challenged by the traditional 4e − counterpart of oxygen evolution. Here we report a CO 2 /carbonate mediation approach to steering the WOR pathway from 4e − to 2e − . Using fluorine-doped tin oxide electrode in carbonate solutions, we achieved high H 2 O 2 selectivity of up to 87%, and delivered unprecedented H 2 O 2 partial currents of up to 1.3 A cm −2 , which represents orders of magnitude improvement compared to literature. Molecular dynamics simulations, coupled with electron paramagnetic resonance and isotope labeling experiments, suggested that carbonate mediates the WOR pathway to H 2 O 2 through the formation of carbonate radical and percarbonate intermediates. The high selectivity, industrial-relevant activity, and good durability open up practical opportunities for delocalized H 2 O 2 production. 
    more » « less
  3. One key objective in electrocatalysis is to design selective catalysts, particularly in cases where the desired products require thermodynamically unfavorable pathways. Electrochemical synthesis of hydrogen peroxide (H 2 O 2 ) via the two-electron water oxidation reaction (2e − WOR) requires a +0.54 V higher potential than four-electron O 2 evolution. So far, best-performing electrocatalysts require considerable overpotentials before reaching peak faradaic efficiency. We present Mn-alloyed TiO 2 coatings prepared by atomic layer deposition (ALD) and annealing as a stable and selective electrocatalyst for 2e − WOR. Faradaic efficiency of >90% at < 150 mV overpotentials was achieved for H 2 O 2 production, accumulating 2.97 mM H 2 O 2 after 8 hours. Nanoscale mixing of Mn 2 O 3 and TiO 2 resulted in a partially filled, highly conductive Mn 3+ intermediate band (IB) within the TiO 2 mid-gap to transport charge across the (Ti,Mn)O x coating. This IB energetically matched that of H 2 O 2 -producing surface intermediates, turning a wide bandgap oxide into a selective electrocatalyst capable of operating in the dark. However, the high selectivity is limited to the low overpotential regime, which limits the system to low current densities and requires further research into increasing turn-over frequency per active site. 
    more » « less
  4. This review provides an electrosynthesis strategy of H2O2viathe 2eORR, covering aspects of reaction mechanisms, performance assessment, catalyst engineering, and setups for scaling up H2O2production. 
    more » « less
  5. null (Ed.)
    Electrochemical synthesis of hydrogen peroxide (H 2 O 2 ) in acidic solution can enable the electro-Fenton process for decentralized environmental remediation, but robust and inexpensive electrocatalysts for the selective two-electron oxygen reduction reaction (2e − ORR) are lacking. Here, we present a joint computational/experimental study that shows both structural polymorphs of earth-abundant cobalt diselenide (orthorhombic o -CoSe 2 and cubic c -CoSe 2 ) are stable against surface oxidation and catalyst leaching due to the weak O* binding to Se sites, are highly active and selective for the 2e − ORR, and deliver higher kinetic current densities for H 2 O 2 production than the state-of-the-art noble metal or single-atom catalysts in acidic solution. o -CoSe 2 nanowires directly grown on carbon paper electrodes allow for the steady bulk electrosynthesis of H 2 O 2 in 0.05 M H 2 SO 4 with a practically useful accumulated concentration of 547 ppm, the highest among the reported 2e − ORR catalysts in acidic solution. Such efficient and stable H 2 O 2 electrogeneration further enables the effective electro-Fenton process for model organic pollutant degradation. 
    more » « less