skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Maxwell relation for dynamical timescales with application to the pressure and temperature dependence of water self-diffusion and shear viscosity
A Maxwell relation for a reaction rate constant (or other dynamical timescale) obtained under constant pressure, p , and temperature, T , is introduced and discussed. Examination of this relationship in the context of fluctuation theory provides insight into the p and T dependence of the timescale and the underlying molecular origins. This Maxwell relation motivates a suggestion for the general form of the timescale as a function of pressure and temperature. This is illustrated by accurately fitting simulation results and existing experimental data on the self-diffusion coefficient and shear viscosity of liquid water. A key advantage of this approach is that each fitting parameter is physically meaningful.  more » « less
Award ID(s):
2102656 1800559 2117449
PAR ID:
10414567
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
18
ISSN:
1463-9076
Page Range / eLocation ID:
12820 to 12832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Maxwell relation validated at the single molecule level. The detailed thermodynamics of nucleic acid conformational changes are systematically investigated usingP/T-controlled single molecule FRET experiments. 
    more » « less
  2. Abstract Synchrotron‐based high‐pressure/high‐temperature single‐crystal X‐ray diffraction experiments to ~24 GPa and 700 K were conducted on eclogitic garnets (low‐Fe: Prp28Alm38Grs33Sps1and high‐Fe: Prp14Alm62Grs19Adr3Sps2) and omphacites (low‐Fe: Quad57Jd42Ae1and high‐Fe: Quad53Jd27Ae20), using an externally heated diamond anvil cell. Fitting the pressure‐volume‐temperature data to a third‐order Birch‐Murnaghan equation of state yields the thermoelastic parameters including bulk modulus (KT0), its pressure derivative (K′T0), temperature derivative ((∂KT/∂T)P), and thermal expansion coefficient (αT). The densities of the high‐Fe and low‐Fe eclogites were then modeled along typical geotherms of the normal mantle and the subducted oceanic crust to the transition zone depth (550 km). The metastable low‐Fe eclogite could be a reason for the stagnant slabs within the upper range of the transition zone. Eclogite would be responsible for density anomalies within 100–200 km in the upper mantle of Asia. 
    more » « less
  3. Xu, Hongwu (Ed.)
    Abstract We have measured the sound velocities and elasticity of synthetic polycrystalline β-Mg2SiO4 containing 1.2 wt% H2O to 10 GPa and 600 K using ultrasonic interferometry with synchrotron X-radiation. We determined sample length at high pressure and temperature using the sample’s X-radiographic image and applied travel times bond corrections appropriate to the experimental cell assembly configuration. Fitting the entire moduli data to third-order finite strain equations yields the adiabatic bulk [KS0 = 153.3(4) GPa] and shear [G0 = 101.8(2) GPa] moduli, their pressure derivatives (∂KS/∂P)T = 5.15(6) and (∂G/∂P)T = 1.68(3) and temperature derivatives (∂KS/∂T)P = −0.0179(9) GPa/K and (∂G/∂T)P = −0.0151(7) GPa/K. Comparing the bulk sound velocity contrast between the new hydrous wadsleyite data and olivine (0.38 wt% H2O) with seismic bulk sound velocity contrasts of 3.5% and 4.0% yields 53% and 60% olivine content, respectively, assuming an iso-chemical mantle model of the Earth. The results suggest that a hydrous mantle transition zone with a pyrolite model composition could explain the 410 km seismic velocity jump. 
    more » « less
  4. Cold temperature is prevalent across the biosphere and slows the rates of chemical reactions. Increased catalysis has been predicted to be a dominant adaptive trait of enzymes to reduced temperature, and this expectation has informed physical models for enzyme catalysis and influenced bioprospecting strategies. To systematically test rate enhancement as an adaptive trait to cold, we paired kinetic constants of 2223 enzyme reactions with their organism’s optimal growth temperature ( T Growth ) and analyzed trends of rate constants as a function of T Growth . These data do not support a general increase in rate enhancement in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there is prior evidence for temperature adaptation from a change in an active site residue that results in a tradeoff between activity and stability. Nevertheless, we found that little of the rate constant variation for 20 KSI variants was accounted for by T Growth . In contrast, and consistent with prior expectations, we observed a correlation between stability and T Growth across 433 proteins. These results suggest that temperature exerts a weaker selection pressure on enzyme rate constants than stability and that evolutionary forces other than temperature are responsible for the majority of enzymatic rate constant variation. 
    more » « less
  5. A magnetocaloric effect (MCE) with sizable isothermal entropy change (ΔS) maintained over a broad range of temperatures above the blocking temperature is reported for a rare earth-free superparamagnetic nanoparticle system comprising of Fe–TiN heterostructure. Superparamagnetic iron (Fe) particles were embedded in a titanium nitride (TiN) thin film matrix in a TiN/Fe/TiN multilayered pattern using a pulsed laser deposition method. High angle annular dark-field images in conjunction with dispersive energy analysis, recorded using scanning transmission electron microscopy, show a clear presence of alternating layers of Fe and TiN with a distinct atomic number contrast between Fe particles and TiN. Quantitative information about the isothermal entropy change (ΔS) and the magnetocaloric effect in the multilayer Fe–TiN system has been obtained by applying Maxwell relation to the magnetization vs temperature data at various fields. With the absence of a dynamic magnetic hysteresis above the blocking temperature, the negative ΔS as high as 4.18 × 103 J/Km3 (normal or forward MCE) is obtained at 3 T at 300 K. 
    more » « less