skip to main content


Title: Combustion characteristics of F24 compared to Jet A in a Common Rail Direct Injection Research Compression Ignition Engine
Research was conducted to determine combustion characteristics such as: ignition delay (ID), combustion delay (CD), combustion phasing (CA 50), combustion duration, derived cetane number (DCN) and ringing intensity (RI) of F24, for its compatibility in Common Rail Direct Injection (CRDI) compression ignition (CI) engine. The first part of this study is investigating the performance of Jet-A, F24, and ultra-low sulfur diesel #2 (ULSD) using a constant volume combustion chamber (CVCC) followed by experiments in a fired CRDI research engine. Investigations of the spray atomization and droplet size distribution of the neat fuels were conducted with a Malvern Mie scattering He-Ne laser. It was found that the average Sauter Mean Diameter (SMD) for Jet-A and F24 are similar, with both fuels SMD droplet range between 25–29 micrometers. Meanwhile, ULSD was found to have a larger SMD particle size in the range of 34–40 micrometers. It was observed during the study, utilizing the CVCC, that the ID and CD for neat ULSD and Jet-A are nearly identical while the combustion of F24 is delayed. F24 was found to have longer durations of both ID and CD by approx. 0.5 ms. This results in a lower DCN for the fuel of 43.5, whereas ULSD and Jet-A have DCNs of 45 and 47 respectively. The peak AHRR for ULSD and Jet-A are nearly identical, whereas F24 has a peak magnitude of approx. 20% lower than ULSD and Jet-A. It was found that both aviation fuels had significantly fewer ringing events occurring after peak high temperature heat release (HTHR), a trend also observed in the CRDI research engine. Neat F24, Jet-A and ULSD were researched in the experimental engine at the same thermodynamic parameters: 5 bar indicated mean effective pressure (IMEP), 50°C (supercharged and EGR) inlet air temperature, 1500 RPM, start of injection (SOI) 16°BTDC, and 800 bar of fuel rail injection pressure as the baseline parameters in order to observe their ignition behavior, low temperature heat release, combustion phasing, and combustion duration. It was found that the ignition delay of F24 and Jet-A was greater than ULSD, approx. 5% for both aviation fuels. This ignition delay also affected the combustion phasing, or CA 50, of the aviation fuels. The CA 50 of the aviation fuels was delayed by approx. 2% compared to ULSD. Jet-A had a nearly identical combustion duration compared to ULSD, however F24 had an extended combustion duration which was approx. 3% longer than that of ULSD and Jet-A. It was discovered with the accumulations of these delays in ID, CD, CA50, that the RI of the aviation fuels were reduced. F24 was discovered to have more delays, and the RI correlates with these results having a 70% reduction in RI compared to ULSD.  more » « less
Award ID(s):
1950207
NSF-PAR ID:
10414637
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
ASME
Date Published:
Journal Name:
Proc. ASME. ICEF2022, ASME 2022 ICE Forward Conference,
Volume:
V001T02A010,
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Coal-To-Liquid (CTL) synthetic aviation fuel, Iso-Paraffinic Kerosene (IPK), was studied for ignition delay, combustion delay, pressure trace, pressure rise rate, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine and a constant volume combustion chamber (CVCC). Autoignition characteristics for neat IPK, neat Ultra-Low Sulfur Diesel (ULSD), and a blend of 50%IPK and 50% ULSD were determined in the CVCC and the effects of the autoignition quality of each fuel were determined also in an IDI engine. ULSD was found to have a Derived Cetane Number (DCN) of 47 for the batch used in this experimentation. IPK was found to have a DCN of 25.9 indicating that is has a lower affinity for autoignition, and the blend fell between the two at 37.5. Additionally, it was found that the ignition delay for IPK in the CVCC was 5.3 ms and ULSD was 3.56 ms. This increase in ignition delay allowed the accumulation of fuel in the combustion chamber when running with IPK that resulted in detonation of the premixed air and fuel found to cause high levels of Ringing Intensity (RI) when running neat IPK indicated by the 60% increase in Peak Pressure Rise Rate (PPRR) when compared to ULSD at the same load. An emissions analysis was conducted at 7 bar Indicated Mean Effective Pressure (IMEP) for ULSD and the blend of 50% ULSD and 50% IPK. With the addition of 50% IPK by mass, there was found to be a reduction in the NOx, CO2, with a slight increase in the CO in g/kWh.

     
    more » « less
  2. ASME (Ed.)
    Investigations were conducted using mass blends of Iso-Paraffinic Kerosene (IPK) and Fischer-Tropsch Synthetic Kerosene (S8) to produce a synthetic surrogate for aerospace F-24. Due to the fossil fuel origin of F-24, the introduction of a synthetic surrogate would create a sustainable aviation fuel (SAF) with sources obtained from within the United States. An analysis of ignition delay (ID), combustion delay (CD), derived cetane number (DCN), negative temperature coefficient (NTC) region, Low-Temperature Heat Release region (LTHR) and High-Temperature Heat Release (HTHR) was conducted using a PAC CID 510 Constant Volume Combustion Chamber (CVCC). The fuels examined in this study are neat IPK, neat S8, neat F-24, and by mass percentages, as follows: 75IPK 25S8, 52IPK 48S8, 51IPK 49S8, 50IPK 50S8 and 25IPK 75S8.

    The DCN values determined for IPK, S8, and F-24 were 26.92, 59.56 and 44.35 respectively. The influence of IPK present in the blends increases CD, thus reducing the DCN significantly. The fuel blend of 50IPK 50S8 was observed to be the closest match to F-24 when comparing DCN, ID and CD.

    The surrogate blends were determined to have a lower magnitude of peak pressure ringing compared to that of the neat S8 and F-24, this is due to the extended NTC region caused by the IPK present in the blend. During further refinement of the surrogate blend, the Apparent Heat Release Rate (AHRR) curve for the 51IPK 49S8 fuel blend was found to have the closest match to the AHRR of F24. The surrogate blend 50IPK 50S8 was shown to have the smallest percent difference and best match during the LTHR stage, compared to F-24, while 52IPK 48S8 had the smallest percent difference for the energy released during LTHR. The ID and CD of the 25/75% blends were too dissimilar from the F-24 target to be considered as a surrogate.

    A Noise Vibration Harshness (NVH) analysis was also conducted during the combustion of the three neat fuels in the CVCC. This analysis was conducted to relate the ID, CD, HTHR and ringing to the vibrations that occur during combustion. Neat S8 was observed to have the most vibrations occurring during the combustion process. Additionally, the HTHR was observed to have a distinct pattern for the three neat fuels and the combustion of these fuels was quieter overall. 

    more » « less
  3. ASME ICEF (Ed.)
    fuel blend consisting of 10% S8 by mass (a Fischer-Tropsch synthetic kerosene), and 90% ULSD (Ultra Low Sulfur Diesel) was investigated for their combustion characteristics and impact on emissions during RCCI (Reactivity Controlled Compression Ignition) combustion in a single cylinder experimental engine utilizing a 65% by mass n-butanol port fuel injection (PFI). RCCI is a dual fuel combustion strategy achieved with the introduction of a PFI fuel of the low-reactive n-butanol, and a direct injection (DI) of a high-reactivity blend (FT-BLEND) into an experimental diesel engine. The combustion analysis and emissions testing were conducted at 1500 RPM at an engine load of 5 bar IMEP (Indicated Mean Effective Pressure), and CA50 of 9° ATDC (After Top Dead Center); CDC (Conventional Diesel Combustion) and RCCI with 65Bu-35ULSD were utilized as the baseline for AHRR (Apparent Heat Release Rate), ringing and emissions comparisons. It was found during a preliminary investigation with a Constant Volume Combustion Chamber (CVCC) that the introduction of 10% by mass S8 into a mixture with 90% ULSD by mass only increased Derived Cetane Number (DCN) by 0.8, yet it was found to have a significant effect on the combustion characteristics of the fuel blend. This led to the change in injection timing necessary for maintaining 65Bu-35F-T BLEND RCCI at a CA50 of 5° ATDC (After Top Dead Center) to be shifted 3° closer to TDC, thus affecting the Ringing Intensity (RI), Pressure Rise Rate, and heat release of the blend all to decrease. CDC was conducted with a primary injection of 14ᵒ BTDC at a rail pressure of 800 bar, all RCCI testing was conducted with 65% PFI of n-butanol by mass and 35% DI, to prevent knock, with a rail pressure of 600 bar and a pilot injection of 60° BTDC for 0.35 ms. 65Bu-35ULSD RCCI was conducted with a primary injection at 6° BTDC with neat ULSD#2, the fuel 65Bu-35F-T BLEND in RCCI had a primary injection at 3° BTDC to maintain CA50 at 9° ATDC. 65Bu-35ULSD RCCI experienced a NOX and soot emissions decrease of 40.8% and 91.44% respectively in comparison to CDC. The fuel 65Bu-35F-T BLEND in RCCI exhibited an additional decrease of NOX and soot of 32.9 and 5.3%, in comparison to 65Bu-35ULSD RCCI for an overall decrease in emissions of 73.7% and 96.71% respectively. Ringing Intensity followed a similar trend with reductions in RI for 65Bu-35ULSD RCCI decreasing only by 6.2% whereas 65Bu-35F-T BLEND had a decrease in RI of 76.6%. Although emissions for both RCCI fuels experienced a decrease in NOX and soot in comparison to CDC, UHC and CO did increase as a result of RCCI. CO emissions for 65Bu-35ULSD RCCI and 65Bu-35F-T BLEND where increased from CDC by a factor of 5 and 4 respectively with UHC emissions rising from CDC by a factor of 3.4. The fuel 65Bu-35F-T BLEND had a higher combustion efficiency than 65Bu-35ULSD in RCCI at 91.2% due to lower CO emissions of the blend. 
    more » « less
  4. ASME (Ed.)
    In this study, iso-paraffinic kerosene (IPK) was analyzed for ignition delay, combustion delay, pressure trace, pressure rise rate and, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine as well as in a constant volume combustion chamber (CVCC). Neat IPK, neat ULSD, and a by-mass blend of 50%IPK50%ULSD were analyzed in a CVCC and an IDI engine to determine the effect of Derived Cetane Number (DCN), Ignition Delay (ID), and Low Temperature Heat Release (LTHR) on combustion timing and engine knock.

    In the CVCC, IPK was found to have a significantly lower DCN than ULSD at 26 and 47, respectively. The blend was found to have a DCN between the two neat fuels at 37.5. Additionally, the ignition delay increased in the CVCC from 3.56 ms for ULSD to 5.3 ms for IPK with the blend falling between the two at 4.38 ms.

    For engine research, the single-cylinder experimental IDI engine was run at 2400 rpm at 5, 6, and 7 Indicated Mean Effective Pressure (IMEP) using each of the three researched fuels. It was found that when running neat IPK, there was a profound level of engine knock at all loads characterized by the 60% increase in the Peak Pressure Rise Rate (PPRR) when compared to ULSD. The pressure trace for IPK at all loads showed a significant delay in combustion due to IPK’s resistance to autoignition. This was observed in the increasing ignition delay in the engine from 0.88 ms for ULSD to 1.1 ms at 7 bar IMEP for IPK. Despite the delay in ignition for IPK, all three researched fuels reached peak Apparent Heat Release Rate (AHRR) at approximately 370° leading to a much more rapid increase in AHRR for IPK when compared to ULSD. This steep slope in the AHRR, also seen in the increased PPRR, and longer ID caused the high levels of engine knock, observed as oscillations in the pressure trace which decreased in magnitude as IMEP increased. 

    more » « less
  5. ASME ; iCEF (Ed.)
    Research was conducted to observe the correlation of ignition delay, combustion delay, the negative temperature coefficient region (NTCR), and the low temperature heat release region (LTHR), in a constant volume combustion chamber (CVCC) in relation to blended amounts of iso-paraffinic kerosene (IPK) by mass with Jet-A and their derived cetane numbers (DCN). The study utilizes the ASTM standard D7668-14.a in a PAC CID 510 CVCC. The DCN was calculated using the ignition delay and combustion delay measured over 15 combustion events. The fuel blends investigated were 75%Jet-A blended with 25%IPK, 50%Jet-A with 50%IPK, 25%Jet-A with 75%IPK, neat Jet-A, and neat IPK. The ignition delay of neat Jet-A and IPK was found to be 3.26ms and 5.31ms, respectively, and the combustion delay of the fuels were 5.00ms and 17.17 ms, respectively. The ignition delay for 75Jet-A25IPK, 50Jet-A50IPK, 25Jet-A75IPK, fuel blends were found to be 3.5ms, 3.8ms, and 4.2ms, respectively. The combustion delay between the 75Jet-A25IPK, 50Jet-A50IPK, 25Jet-A75IPK, blends are 5.8ms, 7.0ms, and 9.4ms, respectively. The DCNs for 75Jet-A25IPK, 50Jet-A50IPK, 25Jet-A75IPK 43.1, 38.7, and 33.5, respectively. The DCN of the fuel blends compared to neat Jet-A was lower by 10.16% for 75Jet-A25IPK, 19.37% for 50Jet-A50IPK, 30.50% for 25Jet-A75IPK and 46.03% for neat IPK. Blends with larger amounts by mass of IPK resulted in extended ignition and combustion delays. It is concluded that the fuels that have larger amounts of IPK blended within them have extended NTC regions, LTHR regions, and decreased ringing intensity during combustion. 
    more » « less