The previously reported Q is a thermoresponsive coiled-coil protein capable of higher-order supramolecular assembly into fibers and hydrogels with upper critical solution temperature (UCST) behavior. Here, we introduce a new coiled-coil protein that is redesigned to disfavor lateral growth of its fibers and thus achieve a higher crosslinking density within the formed hydrogel. We also introduce a favorable hydrophobic mutation to the pore of the coiled-coil domain for increased thermostability of the protein. We note that an increase in storage modulus of the hydrogel and crosslinking density is coupled with a decrease in fiber diameter. We further fully characterize our α-helical coiled-coil (Q2) hydrogel for its structure, nano-assembly, and rheology relative to our previous single domain protein, Q, over the time of its gelation demonstrating the nature of our hydrogel self-assembly system. In this vein, we also characterize the ability of Q2 to encapsulate the small hydrophobic small molecule, curcumin, and its impact on the mechanical properties of Q2. The design parameters here not only show the importance of electrostatic potential in self-assembly but also provide a step towards predictable design of electrostatic protein interactions. 
                        more » 
                        « less   
                    
                            
                            Fluorescent azobenzene-confined coiled-coil mesofibers
                        
                    
    
            Fluorescent protein biomaterials have important applications such as bioimaging in pharmacological studies. Self-assembly of proteins, especially into fibrils, is known to produce fluorescence in the blue band. Capable of self-assembly into nanofibers, we have shown we can modulate its aggregation into mesofibers by encapsulation of a small hydrophobic molecule. Conversely, azobenzenes are hydrophobic small molecules that are virtually non-fluorescent in solution due to their highly efficient photoisomerization. However, they demonstrate fluorogenic properties upon confinement in nanoscale assemblies by reducing the non-radiative photoisomerization. Here, we report the fluorescence of a hybrid protein-small molecule system in which azobenzene is confined in our protein assembly leading to fiber thickening and increased fluorescence. We show our engineered protein Q encapsulates AzoCholine, bearing a photoswitchable azobenzene moiety, in the hydrophobic pore to produce fluorescent mesofibers. This study further investigates the photocontrol of protein conformation as well as fluorescence of an azobenze-containing biomaterial. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1728858
- PAR ID:
- 10414707
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 497 to 501
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Recombinant proteins have emerged as promising building blocks for vesicle self‐assembly because of their versatility through genetic manipulation and biocompatibility. Vesicles composed of thermally responsive elastin‐like polypeptide (ELP) fusion proteins encapsulate cargo during assembly. However, vesicle stability in physiological environments remains a significant challenge for biofunctional applications. Here, incorporation of an unnatural amino acid, para‐azido phenylalanine, into the ELP domain is reported to enable photocrosslinking of protein vesicles and tuning of vesicle size and swelling. The size of the vesicles can be tuned by changing ELP hydrophobicity and ionic strength. Protein vesicles are assessed for their ability to encapsulate doxorubicin and dually deliver doxorubicin and fluorescent protein in vitro as a proof of concept. The resulting photocrosslinkable vesicles made from full‐sized, functional proteins show high potential in drug delivery applications, especially for small molecule/protein combination therapies or targeted therapies.more » « less
- 
            The ability to engineer a solvent-exposed surface of self-assembling coiled coils allows one to achieve a higher-order hierarchical assembly such as nano- or microfibers. Currently, these materials are being developed for a range of biomedical applications, including drug delivery systems; however, ways to mechanistically optimize the coiled-coil structure for drug binding are yet to be explored. Our laboratory has previously leveraged the functional properties of the naturally occurring cartilage oligomeric matrix protein coiled coil (C), not only for its favorable motif but also for the presence of a hydrophobic pore to allow for small molecule binding. This includes the development of Q, a rationally designed pentameric coiled coil derived from C. Here, we present a small library of protein microfibers derived from the parent sequences of C and Q bearing various electrostatic potentials with the aim to investigate the influence of higher-order assembly and encapsulation of candidate small molecule, curcumin. The supramolecular fiber size appears to be well-controlled by sequence-imbued electrostatic surface potential, and protein stability upon curcumin binding is well correlated to relative structure loss, which can be predicted by in silico docking.more » « less
- 
            Since the initial discovery of Aqueoria victoria ’s green fluorescence off the coast of Washington’s Puget Sound, biofluorescent marine organisms have been found across the globe. The variety of colors of biofluorescence as well as the variability in the organisms that exhibit this fluorescence is astounding. The mechanisms of biofluorescence in marine organisms are also variable. To fluoresce, some organisms use fluorescent proteins, while others use small molecules. In eels, green biofluorescence was first identified in Anguilla japonica . The green fluorescence in A. japonica was discovered to be caused by a fatty acid binding protein (UnaG) whose fluorescence is induced by the addition of bilirubin. Members of this class of proteins were later discovered in Kaupichthys eels (Chlopsid FP I and Chlopsid FP II). Here, we report the discovery and characterization of the first member of this class of green fluorescent fatty acid binding proteins from the moray eel Gymnothorax zonipectis . This protein, GymFP, is 15.6 kDa with a fluorescence excitation at 496 nm and an emission maximum at 532 nm upon addition of bilirubin. GymFP is 61% homologous to UnaG and 47% homologous to Chlopsid FP I. Here, we report de novo transcriptome assembly, protein expression, and fluorescence spectroscopic characterization of GymFP. These findings extend the fluorescent fatty acid binding proteins into a third family of true eels (Anguilliformes).more » « less
- 
            Therapeutic biomacromolecules are highly specific, which results in controlled therapeutic effect and less toxicity than small molecules. However, proteins and nucleic acids are large and have significant surface hydrophilicity and charge, thus cannot diffuse into cells. These chemical features render them poorly encapsulated by nanoparticles. Protein vesicles are self-assembling nanoparticles made by warming elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper and a globular protein fused to a glutamate-rich leucine zipper. To impart stimuli-responsive disassembly and small size, ELP was modified to include histidine and tyrosine residues. Additionally, hydrophobic ion pairing (HIP) was used to load and release protein and siRNA cargos requiring endosomal escape. HIP vesicles enabled delivery of cytochrome c, a cytosolically active protein, and significant reduction in viability in traditional two-dimensional (2D) human cancer cell line culture and a biomimetic three-dimensional (3D) organoid model of acute myeloid leukemia. They also delivered siRNA to knockdown protein expression in a murine fibroblast cell line. By examining uptake of positive and negatively charged fluorescent protein cargos loaded by HIP, this work revealed the necessity of HIP for cargo release and how HIP influences protein vesicle self-assembly using microscopy, small angle x-ray scattering, and nanoparticle tracking analysis. HIP protein vesicles have the potential to broaden the use of intracellular proteins for various diseases and extend protein vesicles to deliver other biomacromolecules.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    