skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model-based design of synthetic antisense RNA for predictable gene repression
Our enhanced understanding of RNA folding and function has increased the use of small RNA regulators. Among these RNA regulators, synthetic antisense RNA (asRNA) is designed to contain an RNA sequence complementary to the target mRNA sequence, and the formation of double-stranded RNA (dsRNA) facilitates gene repression due to dsRNA degradation or prevention of ribosome access to the mRNA. Despite the simple complementarity rule, however, predictably tunable repression has been challenging when synthetic asRNAs are used. Here, the protocol for model-based asRNA design is described. This model can predict synthetic asRNA-mediated repression efficiency using two parameters: the change in free energy of complex formation (ΔGCF) and percent mismatch of the target binding region (TBR). The model has been experimentally validated in both Gram-positive and Gram-negative bacteria as well as for target genes in both plasmids and chromosomes. These asRNAs can be created by simply replacing the TBR sequence with one that is complementary to the target mRNA sequence of interest. In principle, this protocol can be applied to design and build asRNAs for predictable gene repression in various contexts, including multiple target genes and organisms, making asRNAs predictably tunable regulators for broad applications.  more » « less
Award ID(s):
2001743
PAR ID:
10414745
Author(s) / Creator(s):
Date Published:
Journal Name:
Methods in molecular biology
ISSN:
1064-3745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Abstract A lack of composable and tunable gene regulators has hindered efforts to engineer non-model bacteria and consortia. Toward addressing this, we explore the broad-host potential of small transcription activating RNA (STAR) and propose a design strategy to achieve tunable gene control. First, we demonstrate that STARs optimized forE. colifunction across different Gram-negative species and can actuate using phage RNA polymerase, suggesting that RNA systems acting at the level of transcription are portable. Second, we explore an RNA design strategy that uses arrays of tandem and transcriptionally fused RNA regulators to precisely alter regulator concentration from 1 to 8 copies. This provides a simple means to predictably tune output gain across species and does not require access to large regulatory part libraries. Finally, we show RNA arrays can be used to achieve tunable cascading and multiplexing circuits across species, analogous to the motifs used in artificial neural networks. 
    more » « less
  2. Since double-stranded RNA (dsRNA) is effective for silencing a wide variety of genes, all genes are typically considered equivalent targets for such RNA interference (RNAi). Yet, loss of some regulators of RNAi in the nematodeCaenorhabditis eleganscan selectively impair the silencing of some genes. Here, we show that such selective requirements can be explained by an intersecting network of regulators acting on genes with differences in their RNA metabolism. In this network, the Maelstrom domain-containing protein RDE-10, the intrinsically disordered protein MUT-16, and the Argonaute protein NRDE-3 work together so that any two are required for silencing one somatic gene, but each is singly required for silencing another somatic gene, where only the requirement for NRDE-3 can be overcome by enhanced dsRNA processing. Quantitative models and their exploratory simulations led us to find that (1) changingcis-regulatory elements of the target gene can reduce the dependence on NRDE-3, (2) animals can recover from silencing in non-dividing cells, and (3) cleavage and tailing of mRNAs with UG dinucleotides, which makes them templates for amplifying small RNAs, are enriched within ‘pUG zones’ matching the dsRNA. Similar crosstalk between pathways and restricted amplification could result in apparently selective silencing by endogenous RNAs. 
    more » « less
  3. Downy mildew (DM) diseases are caused by destructive obligate pathogens with limited control options, posing a significant threat to global agriculture. RNA interference (RNAi) has emerged as a promising, environmentally sustainable strategy for disease management. We evaluated the efficacy of dsRNA-mediated RNAi in suppressing key biological functions in DM pathogens of Arabidopsis thaliana, pea and lettuce: Hyaloperonospora arabidopsidis (Hpa), Peronospora viciae f. sp. pisi (Pvp) and Bremia lactucae (Bl), respectively. Conserved genes, cellulose synthase 3 (CesA3) and beta-tubulin (BTUB), were targeted. Silencing these genes significantly impaired spore germination and infection across species and reduced gene expression correlated with suppressed sporulation, confirming silencing efficacy. We tested dsRNAs from chemical synthesis, in vitro transcription, and Escherichia coli expression. Uptake and silencing efficiency varied with dsRNA length and concentration. In Hpa, short dsRNAs (21–25 bp) produced a variable spore germination rate, with 25 bp dsRNA causing a 247.10% increase, whereas longer dsRNAs (≥ 30 bp) completely inhibited germination. Similarly, in Pvp, dsRNAs of 21–25 bp resulted in a 73.05%–77.46% germination rate, while 30–75 bp dsRNAs abolished germination. Confocal microscopy using Cy-5-labelled short-synthesised dsRNA (SS-dsRNA) confirmed uptake by spores. Sequence specificity influenced efficacy, highlighting the need for precise target design. Multiplexed RNAi impacted silencing synergistically, further reducing germination and sporulation in Hpa. Importantly, SS-dsRNA-mediated silencing was durable, with reduced gene expression sustained at 4, 7, 10 and 11 days post-inoculation. Taken together, our findings demonstrate the potential of dsRNA-mediated gene silencing as a precise, sustainable tool for managing DM pathogens in multiple crop species 
    more » « less
  4. Abstract Robust control over gene translation at arbitrary mRNA targets is an outstanding challenge in microbial synthetic biology. The development of tools that can regulate translation will greatly expand our ability to precisely control genes across the genome. In Escherichia coli, most genes are contained in multi-gene operons, which are subject to polar effects where targeting one gene for repression leads to silencing of other genes in the same operon. These effects pose a challenge for independently regulating individual genes in multi-gene operons. Here, we use CRISPR-dCas13 to address this challenge. We find dCas13-mediated repression exhibits up to 6-fold lower polar effects compared to dCas9. We then show that we can selectively activate single genes in a synthetic multi-gene operon by coupling dCas9 transcriptional activation of an operon with dCas13 translational repression of individual genes within the operon. We also show that dCas13 and dCas9 can be multiplexed for improved biosynthesis of a medically-relevant human milk oligosaccharide. Taken together, our findings suggest that combining transcriptional and translational control can access effects that are difficult to achieve with either mode independently. These combined tools for gene regulation will expand our abilities to precisely engineer bacteria for biotechnology and perform systematic genetic screens. 
    more » « less
  5. Abstract How the noncoding genome affects cellular functions is a key biological question. A particular challenge is to distinguish the effects of noncoding DNA elements from long noncoding RNAs (lncRNAs) that coincide at the same loci. Here, we identified the flowering‐associated intergenic lncRNA (FLAIL) inArabidopsisthrough early floweringflailmutants. Expression ofFLAILRNA from a different chromosomal location in combination with strand‐specific RNA knockdown characterizedFLAILas a trans‐acting RNA molecule.FLAILdirectly binds to differentially expressed target genes that control flowering via RNA–DNA interactions through conserved sequence motifs.FLAILinteracts with protein and RNA components of the spliceosome to affect target mRNA expression through co‐transcriptional alternative splicing (AS) and linked chromatin regulation. In the absence ofFLAIL, splicing defects at the direct FLAIL target flowering gene LACCASE 8 (LAC8) correlated with reduced mRNA expression. Double mutant analyses support a model whereFLAIL‐mediated splicing of LAC8 promotes its mRNA expression and represses flowering. Our study suggests lncRNAs as accessory components of the spliceosome that regulate AS and gene expression to impact organismal development. 
    more » « less