The influence of climate change on the fitness of wild populations is often studied in the context of the spring onset of the reproductive season. This focus is relevant for climate influences on reproductive success, but neglects other fitness‐relevant periods (e.g., autumn preparation for overwintering). We examined variation in climate variables (temperature, rainfall, snowfall, and snowpack) across the full annual cycle of Columbian ground squirrels (
- Award ID(s):
- 1749627
- PAR ID:
- 10414810
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 290
- Issue:
- 1990
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Urocitellus columbianus ) for 21 years. We investigated seasonal climate variables that were associated with fitness variables, climate variables that exhibited directional changes across the study period, and finally observed declines in fitness (−0.03 units/year; total decline = 37%) that were associated with directional changes in climate variables. Annual fitness of adult female ground squirrels was positively associated with spring temperature (r =r =r =r =r =ρ = −0.314 and 0.437, respectively). The summer period corresponds to prehibernation fattening of young and adult ground squirrels. Had we focused on a single point in time (viz. the onset of the breeding season), we would have underestimated the influences of climate change on our population. Rather, we obtained a comprehensive understanding of the influences of climate change on individual fitness by investigating the full lifecycle. -
Abstract Juvenile survival to first breeding is a key life‐history stage for all taxa. Survival through this period can be particularly challenging when it coincides with harsh environmental conditions such as a winter climate or food scarcity, leading to highly variable cohort survival. However, the small size and dispersive nature of juveniles generally make studying their survival more difficult.
In territorial species, a key life‐history event is the acquisition of a territory. A territory is expected to enhance survival, but how it does so is not often identified. We tested how the timing of territory acquisition influenced the winter survival of juvenile North American red squirrels
Tamiasciurus hudsonicus , hereafter red squirrels, and how the timing of this event mediated the sources of mortality. We hypothesized that securing a territory prior to when food resources become available would reduce juvenile susceptibility to predation and climatic factors overwinter.Using 27 years of data on the survival of individually marked juvenile red squirrels, we tested how the timing of territory acquisition influenced survival, whether the population density of red squirrel predators and mean temperature overwinter were related to individual survival probability, and if territory ownership mediated these effects.
Juvenile red squirrel survival was lower in the years of high predator abundance and in colder winters. Autumn territory owners were less susceptible to lynx
Lynx canadensis and possibly mustelidMustela andMartes spp., predation. Autumn territory owners had lower survival in colder winters, but surprisingly non‐owners had higher survival in cold winters.Our results show how the timing of a life‐history event like territory acquisition can directly affect survival and also mediate the effects of biotic and abiotic factors later in life. This engenders a better understanding of the fitness consequences of the timing of key life‐history events.
-
Abstract Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (
Branta bernicla nigricans ) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment. -
null (Ed.)The mechanisms that contribute to variation in lifetime reproductive success are not well understood. One possibility is that telomeres, conserved DNA sequences at chromosome ends that often shorten with age and stress exposures, may reflect differences in vital processes or influence fitness. Telomere length often predicts longevity, but longevity is only one component of fitness and little is known about how lifetime reproductive success is related to telomere dynamics in wild populations. We examined the relationships between telomere length beginning in early life, telomere loss into adulthood and lifetime reproductive success in free-living house sparrows ( Passer domesticus ). We found that females, but not males, with longer telomeres during early life had higher lifetime reproductive success, owing to associations with longevity and not reproduction per year or attempt. Telomeres decreased with age in both sexes, but telomere loss was not associated with lifetime reproductive success. In this species, telomeres may reflect differences in quality or condition rather than the pace of life, but only in females. Sexually discordant selection on telomeres is expected to influence the stability and maintenance of within population variation in telomere dynamics and suggests that any role telomeres play in mediating life-history trade-offs may be sex specific.more » « less
-
Abstract Interactions between organisms are ubiquitous and have important consequences for phenotypes and fitness. Individuals can even influence those they never meet, if they have extended phenotypes that alter the environments others experience. North American red squirrels (
Tamiasciurus hudsonicus ) guard food hoards, an extended phenotype that typically outlives the individual and is usually subsequently acquired by non‐relatives. Hoarding by previous owners can, therefore, influence subsequent owners. We found that red squirrels breed earlier and had higher lifetime fitness if the previous hoard owner was a male. This was driven by hoarding behaviour, as males and mid‐aged squirrels had the largest hoards, and these effects persisted across owners, such that if the previous owner was male or died in mid‐age, subsequent occupants had larger hoards. Individuals can, therefore, influence each other's resource‐dependent traits and fitness without ever meeting, such that the past can influence contemporary population dynamics through extended phenotypes.