Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.
more » « less- Award ID(s):
- 2047631
- PAR ID:
- 10415049
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 51
- Issue:
- W1
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- p. W180-W190
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network–based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and identified context- and cell group–specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analyses including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell–tissue and cell–cell metabolic communications.more » « less
-
Abstract Heterogeneity is a hallmark of cancer, diabetes, cardiovascular diseases, and many other complex diseases. This study has been partly motivated by the unsupervised heterogeneity analysis for complex diseases based on molecular and imaging data, for which, network‐based analysis, by accommodating the interconnections among variables, can be more informative than that limited to mean, variance, and other simple distributional properties. In the literature, there has been very limited research on network‐based heterogeneity analysis, and a common limitation shared by the existing techniques is that the number of subgroups needs to be specified a priori or in an ad hoc manner. In this article, we develop a penalized fusion approach for heterogeneity analysis based on the Gaussian graphical model. It applies penalization to the mean and precision matrix parameters to generate regularized and interpretable estimates. More importantly, a fusion penalty is imposed to “automatedly” determine the number of subgroups and generate more concise, reliable, and interpretable estimation. Consistency properties are rigorously established, and an effective computational algorithm is developed. The heterogeneity analysis of non‐small‐cell lung cancer based on single‐cell gene expression data of the Wnt pathway and that of lung adenocarcinoma based on histopathological imaging data not only demonstrate the practical applicability of the proposed approach but also lead to interesting new findings.
-
Molecular, morphological, and physiological heterogeneity is the inherent property of cells which governs differences in their response to external influence. Tumor cell metabolic heterogeneity is of a special interest due to its clinical relevance to tumor progression and therapeutic outcomes. Rapid, sensitive, and noninvasive assessment of metabolic heterogeneity of cells is a great demand for biomedical sciences. Fluorescence lifetime imaging (FLIM), which is an all-optical technique, is an emerging tool for sensing and quantifying cellular metabolism by measuring fluorescence decay parameters of endogenous fluorophores, such as NAD(P)H. To achieve accurate discrimination between metabolically diverse cellular subpopulations, appropriate approaches to FLIM data collection and analysis are needed. In this paper, the unique capability of FLIM to attain the overarching goal of discriminating metabolic heterogeneity is demonstrated. This has been achieved using an approach to data analysis based on the nonparametric analysis, which revealed a much better sensitivity to the presence of metabolically distinct subpopulations compared to more traditional approaches of FLIM measurements and analysis. The approach was further validated for imaging cultured cancer cells treated with chemotherapy. These results pave the way for accurate detection and quantification of cellular metabolic heterogeneity using FLIM, which will be valuable for assessing therapeutic vulnerabilities and predicting clinical outcomes.more » « less
-
Abstract Characterization of single cell metabolism is imperative for understanding subcellular functional and biochemical changes associated with healthy tissue development and the progression of numerous diseases. However, single‐cell analysis often requires the use of fluorescent tags and cell lysis followed by genomic profiling to identify the cellular heterogeneity. Identifying individual cells in a noninvasive and label‐free manner is crucial for the detection of energy metabolism which will discriminate cell types and most importantly critical for maintaining cell viability for further analysis. Here, we have developed a robust assay using the droplet microfluidic technology together with the phasor approach to fluorescence lifetime imaging microscopy to study cell heterogeneity within and among the leukemia cell lines (K‐562 and Jurkat). We have extended these techniques to characterize metabolic differences between proliferating and quiescent cells—a critical step toward label‐free single cancer cell dormancy research. The result suggests a droplet‐based noninvasive and label‐free method to distinguish individual cells based on their metabolic states, which could be used as an upstream phenotypic platform to correlate with genomic statistics. © 2018 International Society for Advancement of Cytometry
-
Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.more » « less