Entropy-stabilized oxides are single-phase, multicomponent oxides that are stabilized by a large entropy of mixing, ΔS, overcoming a positive enthalpy. Due to the −TΔS term in the Gibbs' free energy, G, it can be hypothesized that entropy-stabilized oxides demonstrate a robust thermal stability. Here, we investigate the high temperature stability (1300–1700 °C) of the prototypical entropy-stabilized rocksalt oxide (MgCoNiCuZn)0.2O in air. We find that at temperatures >1300 °C, the material gradually loses Cu and Zn with increasing temperature. Cu is lost through a selective melting as a Cu-rich liquid phase is formed. Zn is sublimed from the rocksalt phase at approximately similar temperatures to those corresponding to the Cu loss, significantly below both the melting temperature of ZnO and its solubility limit in a rocksalt phase. The elemental loss progressively reduces the entropy of mixing and results in a multiphase solid upon quenching to room temperature. We posit that the high-temperature solubility of Cu and Zn is correlated providing further evidence for entropic stabilization over general solubility arguments.
more »
« less
On the thermal and mechanical properties of Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 O across the high-entropy to entropy-stabilized transition
As various property studies continue to emerge on high entropy and entropy-stabilized ceramics, we seek a further understanding of the property changes across the phase boundary between “high-entropy” and “entropy-stabilized” phases. The thermal and mechanical properties of bulk ceramic entropy stabilized oxide composition Mg 0.2 Co 0.2 Ni 0.2 Cu 0.2 Zn 0.2 O are investigated across this critical transition temperature via the transient plane-source method, temperature-dependent x-ray diffraction, and nano-indentation. The thermal conductivity remains constant within uncertainty across the multi-to-single phase transition at a value of ≈2.5 W/mK, while the linear coefficient of thermal expansion increases nearly 24% from 10.8 to 14.1 × 10 −6 K −1 . Mechanical softening is also observed across the transition.
more »
« less
- Award ID(s):
- 2011839
- PAR ID:
- 10415233
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 10
- Issue:
- 12
- ISSN:
- 2166-532X
- Page Range / eLocation ID:
- 121108
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Interest in high‐entropy inorganic compounds originates from their ability to stabilize cations and anions in local environments that rarely occur at standard temperature and pressure. This leads to new crystalline phases in many‐cation formulations with structures and properties that depart from conventional trends. The highest‐entropy homogeneous and random solid solution is a parent structure from which a continuum of lower‐entropy offspring can originate by adopting chemical and/or structural order. This report demonstrates how synthesis conditions, thermal history, and elastic and chemical boundary conditions conspire to regulate this process in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O, during which coherent CuO nanotweeds and spinel nanocuboids evolve. We do so by combining structured synthesis routes, atomic‐resolution microscopy and spectroscopy, density functional theory, and a phase field modeling framework that accurately predicts the emergent structure and local chemistry. This establishes a framework to appreciate, understand, and predict the macrostate spectrum available to a high‐entropy system that is critical to rationalizing property engineering opportunities.more » « less
-
null (Ed.)Methylammonium lead iodide (MAPbI 3 ) is an important light-harvesting semiconducting material for solar-cell devices. We investigate the effect of long thermal annealing in an inert atmosphere of compacted MAPbI 3 perovskite powders. The microstructure morphology of the MAPbI 3 annealed samples reveals a well-defined grain boundary morphology. The voids and neck-connecting grains are observed throughout the samples, indicating a well-sintered process due to mass diffusion transfer through the grain boundary. The long 40 h thermal annealing at T = 522 K ( k B T = 45 meV) causes a significant shift in the structural phase transition, stabilizing the low-electrical conductivity and high-efficiency cubic structure at room temperature. The complete disordered orientation of MA cations maximizes the entropy of the system, which, in turn, increases the Pb–I–Pb angle close to 180°. The MA rotation barrier and entropy analysis determined through DFT calculations suggest that the configurational entropy is a function of the annealing time. The disordered organic molecules are quenched and become kinetically trapped in the cubic phase down to room temperature. We propose a new phase diagram for this important system combining different structural phases as a function of temperature with annealing time for MAPbI 3 . The absence of the coexistence of different structural phases, leading to thermal hysteresis, can significantly improve the electrical properties of the solar cell devices. Through an entropy-driven stabilization phenomenon, we offer an alternative path for improving the maintenance, toughness, and efficiency of the optoelectronic devices by removing the microstructural stress brought by the structural phase transformation within the solar cell working temperature range.more » « less
-
Abstract High entropy oxides are a class of materials distinguished by the use of configurational entropy to drive material synthesis. These materials are being examined for their exciting physiochemical properties and hold promise in numerous fields, such as chemical sensing, electronics, and catalysis. Patterning and integration of high entropy materials into devices and platforms can be difficult due to their thermal sensitivity and incompatibility with many conventional thermally-based processing techniques. In this work, we present a laser-based technique, laser-induced thermal voxels, that combines the synthesis and patterning of high entropy oxides into a single process step, thereby allowing patterning of high entropy materials directly onto substrates. As a proof-of-concept, we target the synthesis and patterning of a well-characterized rock salt-phase high entropy oxide, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, as well as a spinel-phase high entropy oxide, (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)Cr2O4. We show through electron microscopy and x-ray analysis that the materials created are atomically homogenous and are primarily of the rock salt or spinel phase. These findings show the efficacy of laser induced thermal voxel processing for the synthesis and patterning of high entropy materials and enable new routes for integration of high entropy materials within microscale platform and devices.more » « less
-
Abstract Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics. It was also found that the optical response of high-entropy carbides can be largely tuned from the near-IR to visible when changing the transition metal components and their concentration. By monitoring the electronic structures, we suggest rules for optimizing optical properties and designing tailored high-entropy ceramics. Experiments performed on the archetype carbide HfTa 4 C 5 yielded plasmonic properties from room temperature to 1500K. Here we propose plasmonic transition-metal high-entropy carbides as a class of multifunctional materials. Their combination of plasmonic activity, high-hardness, and extraordinary thermal stability will result in yet unexplored applications.more » « less
An official website of the United States government

