Two-phase thermal management offers cooling performance enhancement by an order of magnitude higher than single-phase flow due to the latent heat associated with phase change. Among the modes of phase-change, boiling can effectively remove massive amounts of heat flux from the surface by employing structured or 3D microporous coatings to significantly enlarge the interfacial surface area for improved heat transfer rate as well as increase the number of potential sites for bubble nucleation and departure. The bubble dynamics during pool boiling are often considered to be essential in predicting heat transfer performance, causing it to be a field of significant interest. While prior investigations seek to modulate the bubble dynamics through either active (e.g., surfactants, electricity) or passive means (e.g., surface wettability, microstructures), the utilization of an ordered microporous architecture to instigate desirable liquid and vapor flow field has been limited. Here, we investigate the bubble dynamics using various spatial patterns of inverse opal channels to induce preferential heat and mass flow site in highly-interconnected microporous media. A fully-coated inverse opal surface demonstrates the intrinsic boiling effects of a uniform microporous coating, which exhibits 156% enhancement in heat transfer coefficient in comparison to the polished silicon surface. The boiling heat transfer performances of spatially-variant inverse opal channels significantly differ based on the pitch spacings between the microporous channels, which dictate the bubble coalescent behaviors and bubble departure characteristics. The elucidated boiling heat transfer performances will provide engineering guidance toward designing optimal two-phase thermal management devices. 
                        more » 
                        « less   
                    
                            
                            Computer vision-assisted investigation of boiling heat transfer on segmented nanowires with vertical wettability
                        
                    
    
            The boiling efficacy is intrinsically tethered to trade-offs between the desire for bubble nucleation and necessity of vapor removal. The solution to these competing demands requires the separation of bubble activity and liquid delivery, often achieved through surface engineering. In this study, we independently engineer bubble nucleation and departure mechanisms through the design of heterogeneous and segmented nanowires with dual wettability with the aim of pushing the limit of structure-enhanced boiling heat transfer performances. The demonstration of separating liquid and vapor pathways outperforms state-of-the-art hierarchical nanowires, in particular, at low heat flux regimes while maintaining equal performances at high heat fluxes. A deep-learning based computer vision framework realized the autonomous curation and extraction of hidden big data along with digitalized bubbles. The combined efforts of materials design, deep learning techniques, and data-driven approach shed light on the mechanistic relationship between vapor/liquid pathways, bubble statistics, and phase change performance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2045322
- PAR ID:
- 10415305
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 14
- Issue:
- 36
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 13078 to 13089
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Extensive research has been conducted to resolve small-scale microlayer and bubble nucleation and departure processes in flow boiling, building on controlled pool boiling studies. Large-scale two-phase flow structures, such as Taylor bubbles, are known to locally modify transport due to their wakes and varying surrounding liquid film thickness. However, the effect of interaction of such large-scale flow processes with bubble nucleation is not yet well characterized. Wakes may drive premature nucleating bubble departure, or conversely, suppress boiling due to boundary layer quenching, significantly affecting overall heat transfer. To explore such phenomena, a two-phase flow boiling visualization facility is developed to collect simultaneous high-speed visualization and infrared (IR) thermal imaging temperature distribution data. The test cell channel is 420 mm long with a 10 mm × 10 mm internal square-cross section. A transparent conductive indium tin oxide (ITO) coated sapphire window serves as a heater and IR interface for measuring the internal wall temperature. The facility is charged with a low boiling point fluid (HFE7000) to reduce uncertainties from heat loss to the laboratory environment. Vertical saturated flow boiling wake-nucleation interaction experiments are performed for varying liquid volume flow rates (0.5 − 1.5 L min-1, laminar-to-turbulent Re) and heat fluxes (0 − 100 kW m-2). Discrete vapor slugs are injected to explore interactions with nucleate boiling processes. By measuring film heater power, surface temperature distributions, and pressures, local instantaneous heat transfer coefficients (HTC) can be obtained. Results will be applied to assess simulations at matched conditions for void fraction, and size statistics of flow structures.more » « less
- 
            Nanostructured hydrophilic surfaces can enhance boiling processes due to the liquid wicking effect of the small surface structures, but consistently uniform nanoscale interstitial spaces would provide very few heterogeneous nucleation sites, which would require high superheat to activate in, for example, liquid water. Experiments indicate that surfaces of this type initiate onset of nucleate boiling at relatively low superheat levels, implying that larger-than-average interstitial spaces exist, apparently as a consequence of larger micron-scale variations of the surface structure or surface chemistry (wetting) resulting from the fabrication process. The investigation summarized here explores the potential correlation between nanostructured surface morphology variations and onset of nucleation. A zinc oxide nanostructured coating was fabricated on a copper substrate for experiments and analysis in this study. The coated surface was subjected to water droplet deposition tests to evaluate wicking and contact angle, followed by vaporization tests at varying surface superheat levels, and extensive electron microscopy imaging of the surface. The results of the vaporization experiments determined the variation of mean heat flux to the droplet as a function of superheat, and high-speed videos documented the superheat at which onset of nucleate boiling (ONB) occurs and variation of nucleation site density with superheat. Image analysis of the electron microscopy images were used to assess the variability of pore size and surface complexity (entropy) over the surface. By determining macroscope bubble nucleation and boiling performance from measured data and high-speed video records for these surfaces, and simultaneously analyzing the morphology of that surface at the micro/nano scale, our data demonstrates the correlation between surface morphology variations and ONB and nucleate boiling active site density. Specifically, our results indicate that increased irregularities in the surface morphology correspond to enhanced probability of nucleation onset and an increase in active nucleation site density as superheat increases. Our data indicates the range of irregularity number density values (number per square millimeter) and the imperfection features that give rise to consistent low superheat ONB (∼ 15◦𝐶), leads to a robust increase in active site density during nucleate boiling as super heat increases. This information can help guide development of enhanced boiling surfaces by providing insight into the frequency of nanosurface morphology variations, per square millimeter, that enhance nucleation onset while also providing enhanced wicking and low contact angle over most of the surface. The implication of these results for design of different types of enhanced boiling surfaces is also discussed.more » « less
- 
            Nanostructured hydrophilic surfaces can enhance boiling processes due to the liquid wicking effect of the small surface structures, but consistently uniform nanoscale interstitial spaces would provide very few heterogeneous nucleation sites, which would require high superheat to activate in, for example, liquid water. Experiments indicate that surfaces of this type initiate onset of nucleate boiling at relatively low superheat levels, implying that larger-than-average interstitial spaces exist, apparently as a consequence of larger micron-scale variations of the surface structure or surface chemistry (wetting) resulting from the fabrication process. The investigation summarized here explores the potential correlation between nanostructured surface morphology variations and onset of nucleation. A zinc oxide nanostructured coating was fabricated on a copper substrate for experiments and analysis in this study. The coated surface was subjected to water droplet deposition tests to evaluate wicking and contact angle, followed by vaporization tests at varying surface superheat levels, and extensive electron microscopy imaging of the surface. The results of the vaporization experiments deter- mined the variation of mean heat flux to the droplet as a function of superheat, and high-speed videos documented the superheat at which onset of nucleate boiling (ONB) occurs and variation of nucleation site density with superheat. Image analysis of the electron microscopy images were used to assess the variability of pore size and surface complexity (entropy) over the surface. By determining macroscope bubble nucleation and boiling performance from measured data and high-speed video records for these surfaces, and simultaneously analyzing the morphology of that surface at the micro/nano scale, our data demonstrates the correlation between surface morphology variations and ONB and nucleate boiling active site density. Specifically, our results indicate that increased irregularities in the surface morphology correspond to enhanced probability of nucleation onset and an increase in active nucleation site density as superheat increases. Our data indicates the range of irregularity number density val- ues (number per square millimeter) and the imperfection features that give rise to consistent low superheat ONB (∼ 15◦𝐶), leads to a robust increase in active site density during nucleate boiling as super heat increases. This information can help guide development of enhanced boiling surfaces by providing insight into the frequency of nanosurface morphology variations, per square millimeter, that enhance nucleation onset while also providing enhanced wicking and low contact angle over most of the surface. The implication of these results for design of different types of enhanced boiling surfaces is also discussed.more » « less
- 
            Abstract Boiling is arguably Nature’s most effective thermal management mechanism that cools submersed matter through bubble-induced advective transport. Central to the boiling process is the development of bubbles. Connecting boiling physics with bubble dynamics is an important, yet daunting challenge because of the intrinsically complex and high dimensional of bubble dynamics. Here, we introduce a data-driven learning framework that correlates high-quality imaging on dynamic bubbles with associated boiling curves. The framework leverages cutting-edge deep learning models including convolutional neural networks and object detection algorithms to automatically extract both hierarchical and physics-based features. By training on these features, our model learns physical boiling laws that statistically describe the manner in which bubbles nucleate, coalesce, and depart under boiling conditions, enabling in situ boiling curve prediction with a mean error of 6%. Our framework offers an automated, learning-based, alternative to conventional boiling heat transfer metrology.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    