This study explores the meteorological source and vertical propagation of gravity waves (GWs) that drive daytime traveling ionospheric disturbances (TIDs), using the specified dynamics version of the SD-WACCM-X (Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension) and the SAMI3 (Sami3 is Also a Model of the Ionosphere) simulations driven by SD-WACCM-X neutral wind and composition. A cold weather front moved over the northern-central USA (90–100°W, 35–45°N) during the daytime of 20 October 2020, with strong upward airflow. GWs with ~500–700 km horizontal wavelengths propagated southward and northward in the thermosphere over the north-central USA. Also, the perturbations were coherent from the surface to the thermosphere; therefore, the GWs were likely generated by vertical acceleration associated with the cold front over Minnesota and South Dakota. The convectively generated GWs had almost infinite vertical wavelength below ~100 km due to being evanescent. This implies that the GWs tunneled through their evanescent region in the middle atmosphere (where a squared vertical wavenumber is equal to or smaller than 0) and became freely propagating in the thermosphere and ionosphere. Medium-scale TIDs (MSTIDs) also propagated southward with the GWs, suggesting that the convectively generated GWs created MSTIDs.
more »
« less
Investigating the Role of Gravity Waves on Equatorial Ionospheric Irregularities Using TIMED/SABER and C/NOFS Satellite Observations
In this paper, for the first time, simultaneous atmospheric temperature perturbation profiles obtained from the TIMED/SABER satellite and equatorial ion density and vertical plasma drift velocity observations with and without ESF activity obtained from the C/NOFS satellite are used to investigate the effect of gravity waves (GW) on ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs are estimated by applying wavelet analysis techniques. In addition, vertically propagating GWs that dissipate energy in the ionosphere-thermosphere system are investigated using the spectral analysis technique. We find that the vertical wavelength of GW, corresponding to dominant wavelet power, ranges from 12 to 31 km regardless of the conditions of the ionosphere; however, GWs with vertical wavelengths between about 1 to 13 km are found every day, saturated between 90 and 110 km at different longitudinal sectors. Filtering out vertical wavelengths above 13 km from temperature perturbations, ranges of zonal wavelengths of GW (i.e., from about 290 to 950 km) are found corresponding to irregular and non-irregular ionosphere. Similarly, corresponding to dominant oscillations, the zonal wavelength of ion density perturbations is found within 16 to 1520 km. Moreover, we find an excellent agreement among the median zonal wavelengths of GW for the cases of irregular and non-irregular ionosphere and ion density perturbations that are 518, 495, and 491 km, respectively. The results imply that seed perturbations due to GW with a vertical wavelength from about 1 to 13 km evolve to ion density irregularity and may be amplified due to post-sunset vertical upward drift velocity.
more »
« less
- PAR ID:
- 10415466
- Date Published:
- Journal Name:
- Atmosphere
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2073-4433
- Page Range / eLocation ID:
- 1414
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The global 3‐dimensional structure of the concentric traveling ionospheric disturbances (CTIDs) triggered by 2022 Tonga volcano was reconstructed by using the 3‐dimensional computerized ionospheric tomography (3DCIT) technique and extensive global navigation satellite system (GNSS) observations. This study provides the first estimation of the CTIDs vertical wavelengths, ∼736 km, which was much larger than the gravity wave (GW) vertical wavelength, 240–400 km, estimated using ICON neutral wind observations. Notable trend with the variation of azimuth was also found in horizontal speeds at 200 and 500 km altitudes and differences between them. These results imply that (a) the global propagation of Lamb waves determined the arrival time of local ionospheric disturbances, and (b) the arriving Lamb waves caused vertical atmospheric perturbations that are not typical of GWs, resulting in local thermospheric horizontal wave propagation which is faster than the Lamb wave propagation at lower altitudes.more » « less
-
Abstract The National Aeronautics and Space Administration (NASA) Atmospheric Waves Experiment (AWE) instrument, launched in November 2023, provides direct observation of small‐scale (30–300 km) gravity waves (GWs) in the mesosphere on a global scale. This work examined changes in GW activity observed by AWE during two major Sudden Stratospheric Warmings (SSWs) in the 2023 and 2024 winter season. Northern Hemisphere (NH) midlatitude GW activity during these events shared similarities. Variations in mesospheric GW activity showed an evident correlation with the magnitude of zonal wind in the upper stratosphere. NH midlatitude GW activity at 87 km was reduced following the onset of SSWs, likely caused by wind filtering and wave saturation. The upward propagation of GWs was suppressed when the zonal wind reversed from eastward to westward in the upper stratosphere. In regions where the zonal wind weakened but remained eastward, the weakened GWs could be due to their refraction to shorter vertical wavelengths.more » « less
-
Abstract We present a new version of the high‐resolution Kühlungsborn Mechanistic general Circulation Model (KMCM) extended toz ∼ 450 km. This model is called HIAMCM (HI Altitude Mechanistic general Circulation Model) and explicitly simulates gravity waves (GWs) down to horizontal wavelengths ofλh ∼ 165 km. We find predominant tertiary GWs in the winter thermosphere at middle/high latitudes. These GWs typically have horizontal wavelengthsλh ∼ 300–1,100 km, ground‐based periods∼25–90 min, and intrinsic horizontal phase speedscIh ∼ 250–350 m s−1. Abovez∼ 200 km, the predominant GW horizontal propagation directions are roughly against the background winds from the diurnal tide; the GWs propagate mainly poleward at midnight, eastward at 6 local time (LT), equatorward at noon, and westward at 18 LT. Wintertime GWs atz∼ 300 km having 165 km ≤λh≤ 330 km create a large hot spot over the Southern Andes/Antarctic Peninsula that agrees well with quiet time satellite measurements. Due to cancelation effects, the time‐averaged zonal mean Eliassen‐Palm flux divergence from the resolved GWs in the thermosphere is negligible compared to that of the tides and compared to the zonal component of the time‐averaged zonal mean ion drag. We also find that the thermospheric GWs dissipate mainly from macroturbulent diffusion and, abovez∼ 200 km, from molecular diffusion, whereas the tides dissipate mainly from ion drag. The averaged dissipative heating in the thermosphere due to tides is much stronger than that due to GWs.more » « less
-
Abstract The Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites measure in‐situ thermospheric density and cross‐track wind. When propagating obliquely to the satellite track in a horizontal plane (i.e., not purely along‐track or cross‐track), gravity waves (GWs) can be observed both in the density and cross‐track wind perturbations. We employ the Wavelet Analysis, red noise model, dissipative dispersion and polarization relations for thermospheric GWs, and specific criteria to determine whether a quiet‐time (Kp < 3) thermospheric traveling atmospheric disturbances (TADs) event is a GW or not. The first global morphology of thermospheric GWs instead of TADs is reported. The fast intrinsic horizontal phase speed (cIH> 600 m/s) of most GWs suggests that they are not generated in the lower/middle atmosphere (wherecIH < 300 m/s). A second population of GWs with slower speeds (cIH = 50–250 m/s) in GOCE are likely from the lower/middle atmosphere, but they occur much less frequently in CHAMP. GW hotspots occur during the high‐latitude and the winter midlatitude regions. GW amplitudes exhibit semi‐annual and annual variations. These findings suggest that most GOCE and CHAMP GWs are higher‐order GWs from primary GW sources in the lower/middle atmosphere. Finally, the average propagation direction of the CHAMP GWs exhibits a clear diurnal cycle, with clockwise (counterclockwise) occurring in the northern (southern) hemisphere and equatorward propagation occurring at ∼13 LST. This suggests that the predominant GW propagation direction is opposite to the background wind direction.more » « less
An official website of the United States government

