skip to main content


Title: A machine-learning approach for long-term prediction of experimental cardiac action potential time series using an autoencoder and echo state networks
Computational modeling and experimental/clinical prediction of the complex signals during cardiac arrhythmias have the potential to lead to new approaches for prevention and treatment. Machine-learning (ML) and deep-learning approaches can be used for time-series forecasting and have recently been applied to cardiac electrophysiology. While the high spatiotemporal nonlinearity of cardiac electrical dynamics has hindered application of these approaches, the fact that cardiac voltage time series are not random suggests that reliable and efficient ML methods have the potential to predict future action potentials. This work introduces and evaluates an integrated architecture in which a long short-term memory autoencoder (AE) is integrated into the echo state network (ESN) framework. In this approach, the AE learns a compressed representation of the input nonlinear time series. Then, the trained encoder serves as a feature-extraction component, feeding the learned features into the recurrent ESN reservoir. The proposed AE-ESN approach is evaluated using synthetic and experimental voltage time series from cardiac cells, which exhibit nonlinear and chaotic behavior. Compared to the baseline and physics-informed ESN approaches, the AE-ESN yields mean absolute errors in predicted voltage 6–14 times smaller when forecasting approximately 20 future action potentials for the datasets considered. The AE-ESN also demonstrates less sensitivity to algorithmic parameter settings. Furthermore, the representation provided by the feature-extraction component removes the requirement in previous work for explicitly introducing external stimulus currents, which may not be easily extracted from real-world datasets, as additional time series, thereby making the AE-ESN easier to apply to clinical data.  more » « less
Award ID(s):
1762553 2011280
NSF-PAR ID:
10415526
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chaos: An Interdisciplinary Journal of Nonlinear Science
Volume:
32
Issue:
6
ISSN:
1054-1500
Page Range / eLocation ID:
063117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The electrical signals triggering the heart's contraction are governed by non-linear processes that can produce complex irregular activity, especially during or preceding the onset of cardiac arrhythmias. Forecasts of cardiac voltage time series in such conditions could allow new opportunities for intervention and control but would require efficient computation of highly accurate predictions. Although machine-learning (ML) approaches hold promise for delivering such results, non-linear time-series forecasting poses significant challenges. In this manuscript, we study the performance of two recurrent neural network (RNN) approaches along with echo state networks (ESNs) from the reservoir computing (RC) paradigm in predicting cardiac voltage data in terms of accuracy, efficiency, and robustness. We show that these ML time-series prediction methods can forecast synthetic and experimental cardiac action potentials for at least 15–20 beats with a high degree of accuracy, with ESNs typically two orders of magnitude faster than RNN approaches for the same network size. 
    more » « less
  2. Abstract

    An instantaneous and precise coating inspection method is imperative to mitigate the risk of flaws, defects, and discrepancies on coated surfaces. While many studies have demonstrated the effectiveness of automated visual inspection (AVI) approaches enhanced by computer vision and deep learning, critical challenges exist for practical applications in the manufacturing domain. Computer vision has proven to be inflexible, demanding sophisticated algorithms for diverse feature extraction. In deep learning, supervised approaches are constrained by the need for annotated datasets, whereas unsupervised methods often result in lower performance. Addressing these challenges, this paper proposes a novel deep learning-based automated visual inspection (AVI) framework designed to minimize the necessity for extensive feature engineering, programming, and manual data annotation in classifying fuel injection nozzles and discerning their coating interfaces from scratch. This proposed framework comprises six integral components: It begins by distinguishing between coated and uncoated nozzles through gray level co-occurrence matrix (GLCM)-based texture analysis and autoencoder (AE)-based classification. This is followed by cropping surface images from uncoated nozzles, and then building an AE model to estimate the coating interface locations on coated nozzles. The next step involves generating autonomously annotated datasets derived from these estimated coating interface locations. Subsequently, a convolutional neural network (CNN)-based detection model is trained to accurately localize the coating interface locations. The final component focuses on enhancing model performance and trustworthiness. This framework demonstrated over 95% accuracy in pinpointing the coating interfaces within the error range of ± 6 pixels and processed at a rate of 7.18 images per second. Additionally, explainable artificial intelligence (XAI) techniques such as t-distributed stochastic neighbor embedding (t-SNE) and the integrated gradient substantiated the reliability of the models.

     
    more » « less
  3. Identifying the source of integrated circuit (IC) degradation and being able to track its degradation via its electrical characteristics (e.g. the Voltage Transfer Characteristics, VTC, of an inverter) is very useful in failure analysis. This is because the electrical measurement is non-destructive, low-cost, and rapid. However, the extraction of defects from electrical characteristics requires significant domain expertise. To reduce or even obviate the need for domain expertise so that the process can be automatic for various circuits, one may use manifold learning. As a type of machine learning (ML), manifold learning also requires a large amount of accurate training data. To obtain enough defect training data, which is almost impossible from experiments, one may use SPICE simulation. Based on our previous work of using AutoEncoder (AE) to perform SPICE-augmented ML to extract the pMOS and nMOS source contact resistances from the inverter VTC, in this paper, we compare the efficacy of using another 6 types of manifold learning. They are used to predict the experimental result and it is found that most of them have reasonable performance although the AE is still the best (R2=0.9). However, when including also the variation of PMOS width (as a weak perturbation to the data), algorithms such as Locally Linear Embedding (LLE) are found to perform better than AE (R2=0.72) with LLE (R2=0.83) being the best. Therefore, multiple manifold learnings are suggested to be used in parallel in real production to enhance accuracy. 
    more » « less
  4. Multivariate time-series data are frequently observed in critical care settings and are typically characterized by sparsity (missing information) and irregular time intervals. Existing approaches for learning representations in this domain handle these challenges by either aggregation or imputation of values, which in-turn suppresses the fine-grained information and adds undesirable noise/overhead into the machine learning model. To tackle this problem, we propose a S elf-supervised Tra nsformer for T ime- S eries (STraTS) model, which overcomes these pitfalls by treating time-series as a set of observation triplets instead of using the standard dense matrix representation. It employs a novel Continuous Value Embedding technique to encode continuous time and variable values without the need for discretization. It is composed of a Transformer component with multi-head attention layers, which enable it to learn contextual triplet embeddings while avoiding the problems of recurrence and vanishing gradients that occur in recurrent architectures. In addition, to tackle the problem of limited availability of labeled data (which is typically observed in many healthcare applications), STraTS utilizes self-supervision by leveraging unlabeled data to learn better representations by using time-series forecasting as an auxiliary proxy task. Experiments on real-world multivariate clinical time-series benchmark datasets demonstrate that STraTS has better prediction performance than state-of-the-art methods for mortality prediction, especially when labeled data is limited. Finally, we also present an interpretable version of STraTS, which can identify important measurements in the time-series data. Our data preprocessing and model implementation codes are available at https://github.com/sindhura97/STraTS . 
    more » « less
  5. This paper revisits building machine learning algorithms that involve interactions between entities, such as those between financial assets in an actively managed portfolio, or interac- tions between users in a social network. Our goal is to forecast the future evolution of ensembles of multivariate time series in such applications (e.g., the future return of a financial asset or the future popularity of a Twitter account). Designing ML algorithms for such systems requires addressing the challenges of high-dimensional interactions and non-linearity. Existing approaches usually adopt an ad-hoc approach to integrating high-dimensional techniques into non-linear models and re- cent studies have shown these approaches have questionable efficacy in time-evolving interacting systems. To this end, we propose a novel framework, which we dub as the additive influence model. Under our modeling assump- tion, we show that it is possible to decouple the learning of high-dimensional interactions from the learning of non-linear feature interactions. To learn the high-dimensional interac- tions, we leverage kernel-based techniques, with provable guarantees, to embed the entities in a low-dimensional latent space. To learn the non-linear feature-response interactions, we generalize prominent machine learning techniques, includ- ing designing a new statistically sound non-parametric method and an ensemble learning algorithm optimized for vector re- gressions. Extensive experiments on two common applica- tions demonstrate that our new algorithms deliver significantly stronger forecasting power compared to standard and recently proposed methods. 
    more » « less