The software supply chain (SSC) attack has become one of the crucial issues that are being increased rapidly with the advancement of the software development domain. In general, SSC attacks execute during the software development processes lead to vulnerabilities in software products targeting downstream customers and even involved stakeholders. Machine Learning approaches are proven in detecting and preventing software security vulnerabilities. Besides, emerging quantum machine learning can be promising in addressing SSC attacks. Considering the distinction between traditional and quantum machine learning, performance could be varies based on the proportions of the experimenting dataset. In this paper, we conduct a comparative analysis between quantum neural networks (QNN) and conventional neural networks (NN) with a software supply chain attack dataset known as ClaMP. Our goal is to distinguish the performance between QNN and NN and to conduct the experiment, we develop two different models for QNN and NN by utilizing Pennylane for quantum and TensorFlow and Keras for traditional respectively. We evaluated the performance of both models with different proportions of the ClaMP dataset to identify the f1 score, recall, precision, and accuracy. We also measure the execution time to check the efficiency of both models. The demonstration result indicates that execution time for QNN is slower than NN with a higher percentage of datasets. Due to recent advancements in QNN, a large level of experiments shall be carried out to understand both models accurately in our future research.
more »
« less
Exploring the Vulnerabilities of Machine Learning and Quantum Machine Learning to Adversarial Attacks using a Malware Dataset: A Comparative Analysis
The burgeoning fields of machine learning (ML) and quantum machine learning (QML) have shown remarkable potential in tackling complex problems across various domains. However, their susceptibility to adversarial attacks raises concerns when deploying these systems in security-sensitive applications. In this study, we present a comparative analysis of the vulnerability of ML and QML models, specifically conventional neural networks (NN) and quantum neural networks (QNN), to adversarial attacks using a malware dataset. We utilize a software supply chain attack dataset known as ClaMP and develop two distinct models for QNN and NN, employing Pennylane for quantum implementations and TensorFlow and Keras for traditional implementations. Our methodology involves crafting adversarial samples by introducing random noise to a small portion of the dataset and evaluating the impact on the models’ performance using accuracy, precision, recall, and F1 score metrics. Based on our observations, both ML and QML models exhibit vulnerability to adversarial attacks. While the QNN’s accuracy decreases more significantly compared to the NN after the attack, it demonstrates better performance in terms of precision and recall, indicating higher resilience in detecting true positives under adversarial conditions. We also find that adversarial samples crafted for one model type can impair the performance of the other, highlighting the need for robust defense mechanisms. Our study serves as a foundation for future research focused on enhancing the security and resilience of ML and QML models, particularly QNN, given its recent advancements. A more extensive range of experiments will be conducted to better understand the performance and robustness of both models in the face of adversarial attacks.
more »
« less
- PAR ID:
- 10415570
- Date Published:
- Journal Name:
- IEEE CARL K. CHANG SYMPOSIUM ON SOFTWARE SERVICES ENGINEERING
- Page Range / eLocation ID:
- 10 pp
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The software supply chain (SSC) attack has become one of the crucial issues that are being increased rapidly with the advancement of the software development domain. In general, SSC attacks execute during the software development processes lead to vulnerabilities in software products targeting downstream customers and even involved stakeholders. Machine Learning approaches are proven in detecting and preventing software security vulnerabilities. Besides, emerging quantum machine learning can be promising in addressing SSC attacks. Considering the distinction between traditional and quantum machine learning, performance could be varies based on the proportions of the experimenting dataset. In this paper, we conduct a comparative analysis between quantum neural networks (QNN) and conventional neural networks (NN) with a software supply chain attack dataset known as ClaMP. Our goal is to distinguish the performance between QNN and NN and to conduct the experiment, we develop two different models for QNN and NN by utilizing Pennylane for quantum and TensorFlow and Keras for traditional respectively. We evaluated the performance of both models with different proportions of the ClaMP dataset to identify the f1 score, recall, precision, and accuracy. We also measure the execution time to check the efficiency of both models. The demonstration result indicates that execution time for QNN is slower than NN with a higher percentage of datasets. Due to recent advancements in QNN, a large level of experiments shall be carried out to understand both models accurately in our future research.more » « less
-
Quantum Computing (QC) has gained immense popularity as a potential solution to deal with the ever-increasing size of data and associated challenges leveraging the concept of quantum random access memory (QRAM). QC promises quadratic or exponential increases in computational time with quantum parallelism and thus offer a huge leap forward in the computation of Machine Learning algorithms. This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML). We applied QML methods such as Quantum Support Vector Machine (QSVM), and Quantum Neural Network (QNN) to detect Software Supply Chain (SSC) attacks. Due to the access limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as IBM Qiskit and TensorFlow Quantum. We evaluated the performance of QML in terms of processing speed and accuracy and finally, compared with its classical counterparts. Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks.more » « less
-
Meyendorf, Norbert G.; Farhangdoust, Saman (Ed.)Network intrusion detection systems (NIDS) for Internet-of-Things (IoT) infrastructure are among the most critical tools to ensure the protection and security of networks against malicious cyberattacks. This paper employs four machine learning algorithms and evaluates their performance in NIDS considering the accuracy, precision, recall, and F-score. The comparative analysis conducted using the CICIDS2017 dataset reveals that the Boosted machine learning techniques perform better than the other algorithms reaching the predicted accuracy of above 99% in detecting cyberattacks. Such ML-based attack detectors also have the largest weighted metrics of F1-score, precision, and recall. The results assist the network engineers in choosing the most effective machine learning-based NIDS to ensure network security for today’s growing IoT network traffic.more » « less
-
This work proposes the use of machine learning (ML) as a candidate for the detection of various types of message injection attacks against automatic dependent surveillance-broadcast (ADSB) messaging systems. Authentic ADS-B messages from a high-traffic area are collected from an open-source platform. These messages are combined with others imposing path modification, ghost aircraft injection, and velocity drift obtained from simulations. Then, ADS-B-related features are extracted from such messages and used to train different ML models for binary classification. For this purpose, authentic ADS-B data is considered as Class 1 (i.e., no attack), while the injection attacks are considered as Class 2 (i.e., presence of attack). The performance of the models is analyzed with metrics, including detection, misdetection, and false alarm rates, as well as validation accuracy, precision, recall, and Fl-score. The resulting models enable identifying the presence of injection attacks with a detection rate of 99.05%, and false alarm and misdetection rates of 0.76% and 1.10%, respectively.more » « less