skip to main content

This content will become publicly available on July 10, 2024

Title: Computing Students’ Understanding of Dispositions: A Qualitative Study
Dispositions, along with skills and knowledge, form the three components of competency-based education. Moreover, studies have shown dispositions to be necessary for a successful career. However, unlike evidence-based teaching and learning approaches for knowledge acquisition and skill development, few studies focus on translating dispositions into observable behavioral patterns. An operationalization of dispositions, however, is crucial for students to understand and achieve respective learning outcomes in computing courses. This paper describes a multi-institutional study investigating students’ understanding of dispositions in terms of their behaviors while completing coursework. Students in six computing courses at four different institutions filled out a survey describing an instance of applying each of the five surveyed dispositions (adaptable, collaborative, persistent, responsible, and self-directed) in the courses’ assignments. The authors evaluated data by using Mayring’s qualitative content analysis. The result was a coding scheme with categories summarizing students’ concepts of dispositions and how they see themselves applying dispositions in the context of computing. These results are a first step in understanding dispositions in computing education and how they manifest in student behavior. This research has implications for educators developing new pedagogical approaches to promote and facilitate dispositions. Moreover, the operationalized behaviors constitute a starting point for new assessment strategies of dispositions.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 28th ACM Conference on Innovation and Technology in Computer Science Education
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms 
    more » « less
  2. This theory paper focuses on understanding how mastery learning has been implemented in undergraduate engineering courses through a systematic review. Academic environments that promote learning, mastery, and continuous improvement rather than inherent ability can promote performance and persistence. Scholarship has argued that students could achieve mastery of the course material when the time available to master concepts and the quality of instruction was made appropriate to each learner. Increasing time to demonstrate mastery involves a course structure that allows for repeated attempts on learning assessments (i.e., homework, quizzes, projects, exams). Students are not penalized for failed attempts but are rewarded for achieving eventual mastery. The mastery learning approach recognizes that mastery is not always achieved on first attempts and learning from mistakes and persisting is fundamental to how we learn. This singular concept has potentially the greatest impact on students’ mindset in terms of their belief they can be successful in learning the course material. A significant amount of attention has been given to mastery learning courses in secondary education and mastery learning has shown an exceptionally positive effect on student achievement. However, implementing mastery learning in an undergraduate course can be a cumbersome process as it requires instructors to significantly restructure their assignments and exams, evaluation process, and grading practices. In light of these challenges, it is unclear the extent to which mastery learning has been implemented in undergraduate engineering courses or if similar positive effects can be found. Therefore, we conducted a systematic review to elucidate, how in the U.S., (1) has mastery learning been implemented in undergraduate engineering courses from 1990 to the present time and (2) the student outcomes that have been reported for these implementations. Using the systematic process outlined by Borrego et al. (2014), we surveyed seven databases and a total of 584 articles consisting of engineering and non-engineering courses were identified. We focused our review on studies that were centered on applying the mastery learning pedagogical method in undergraduate engineering courses. All peer-reviewed and practitioner articles and conference proceedings that were within our scope were included in the synthetization phase of the review. Most articles were excluded based on our inclusion and exclusion criteria. Twelve studies focused on applying mastery learning to undergraduate engineering courses. The mastery learning method was mainly applied on midterm exams, few studies used the method on homework assignments, and no study applied the method to the final exam. Students reported an increase in learning as a result of applying mastery learning. Several studies reported that students’ grades in a traditional final exam were not affected by mastery learning. Students’ self-reported evaluation of the course suggests that students prefer the mastery learning approach over traditional methods. Although a clear consensus on the effect of the mastery learning approach could not be achieved as each article applied different survey instruments to capture students’ perspectives. Responses to open-ended questions have mixed results. Two studies report more positive student comments on opened-ended questions, while one study report receiving more negative comments regarding the implementation of the mastery learning method. In the full paper we more thoroughly describe the ways in which mastery learning was implemented along with clear examples of common and divergent student outcomes across the twelve studies. 
    more » « less
  3. Competency-based learning has been a successful pedagogical approach for centuries, but only recently has it gained traction within computing. Competencies, as defined in Computing Curricula 2020, comprise knowledge, skills, and professional dispositions. Building on recent developments in competency and computing education, this working group examined relevant pedagogical theories, investigates various skill frameworks, reviewed competencies and standard practices in other professional disciplines such as medicine and law. It also investigated the integrative nature of content knowledge, skills, and professional dispositions in defining professional competencies in computing education. In addition, the group explored appropriate pedagogies and competency assessment approaches. It also developed guidelines for evaluating student achievement against relevant professional competency frameworks and explores partnering with employers to offer students genuine professional experience. Finally, possible challenges and opportunities in moving from traditional knowledge-based to competency-based education were also examined. This report makes recommendations to inspire educators of future computing professionals and smooth students’ transition from academia to employment. 
    more » « less
  4. For many decades, educational communities, including computing education, have debated the value of telling students what they need to know (i.e., direct instruction) compared to guiding them to construct knowledge themselves (i.e., constructivism). Comparisons of these two instructional approaches have inconsistent results. Direct instruction can be more efficient for short-term performance but worse for retention and transfer. Constructivism can produce better retention and transfer, but this outcome is unreliable. To contribute to this debate, we propose a new theory to better explain these research results. Our theory, multiple conceptions theory, states that learners develop better conceptual knowledge when they are guided to compare multiple conceptions of a concept during instruction. To examine the validity of this theory, we used this lens to evaluate the literature for eight instructional techniques that guide learners to compare multiple conceptions, four from direct instruction (i.e., test-enhanced learning, erroneous examples, analogical reasoning, and refutation texts) and four from constructivism (i.e., productive failure, ambitious pedagogy, problem-based learning, and inquiry learning). We specifically searched for variations in the techniques that made them more or less successful, the mechanisms responsible, and how those mechanisms promote conceptual knowledge, which is critical for retention and transfer. To make the paper directly applicable to education, we propose instructional design principles based on the mechanisms that we identified. Moreover, we illustrate the theory by examining instructional techniques commonly used in computing education that compare multiple conceptions. Finally, we propose ways in which this theory can advance our instruction in computing and how computing education researchers can advance this general education theory. 
    more » « less
  5. Abstract Background

    Engineering education seeks to prepare students for engineering practice, but the concept of preparedness is often ill‐defined. Moreover, findings from studies of different populations or in different contexts vary regarding how well new graduates are prepared. These variations, coupled with the lack of clarity, suggest the need to better understand what it means to be prepared for engineering work.


    This study contributes to research on workplace preparation by exploring how new graduates describe being prepared for engineering work.


    Applying secondary analysis to data from the multi‐institution Capstone To Work (C2W) project, we used thematic analysis to explore new engineers' descriptions of preparedness. We analyzed written responses to structured questions about the school‐to‐work transition collected weekly during participants' first 12 weeks of work; 105 graduates drawn from four universities provided 956 responses, with a mean of 9 (out of 12 possible) responses per participant.


    Participants' descriptions of preparedness included applying concrete skills, recognizing familiar situations, and having strategies for approaching challenging tasks even when they lacked relevant knowledge or skill.


    Our findings suggest that although many discussions about workplace preparation implicitly focus narrowly on mastery of skills and knowledge, that focus may not fully capture new graduates' experiences, and may limit discussions about the ways in which school can (and cannot) prepare students for work. A more expansive understanding may better support both student learning and workplace onboarding, though more research is needed across stakeholders to establish shared understanding.

    more » « less