Motivated by recent experimental observations of opposite Chern numbers in R-type twisted MoTe2and WSe2homobilayers, we perform large-scale density-functional-theory calculations with machine learning force fields to investigate moiré band topology across a range of twist angles in both materials. We find that the Chern numbers of the moiré frontier bands change sign as a function of twist angle, and this change is driven by the competition between moiré ferroelectricity and piezoelectricity. Our large-scale calculations, enabled by machine learning methods, reveal crucial insights into interactions across different scales in twisted bilayer systems. The interplay between atomic-level relaxation effects and moiré-scale electrostatic potential variation opens new avenues for the design of intertwined topological and correlated states, including the possibility of mimicking higher Landau level physics in the absence of magnetic field.
Lattice reconstruction and corresponding strain accumulation plays a key role in defining the electronic structure of two-dimensional moiré superlattices, including those of transition metal dichalcogenides (TMDs). Imaging of TMD moirés has so far provided a qualitative understanding of this relaxation process in terms of interlayer stacking energy, while models of the underlying deformation mechanisms have relied on simulations. Here, we use interferometric four-dimensional scanning transmission electron microscopy to quantitatively map the mechanical deformations through which reconstruction occurs in small-angle twisted bilayer MoS2and WSe2/MoS2heterobilayers. We provide direct evidence that local rotations govern relaxation for twisted homobilayers, while local dilations are prominent in heterobilayers possessing a sufficiently large lattice mismatch. Encapsulation of the moiré layers in hBN further localizes and enhances these in-plane reconstruction pathways by suppressing out-of-plane corrugation. We also find that extrinsic uniaxial heterostrain, which introduces a lattice constant difference in twisted homobilayers, leads to accumulation and redistribution of reconstruction strain, demonstrating another route to modify the moiré potential.
more » « less- Award ID(s):
- 2238196
- PAR ID:
- 10415639
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Excitons can be trapped by moiré potentials in van der Waals (vdW) heterostructures, forming ordered arrays of quantum dots. Excitons can also be trapped by defect potentials as single photon emitters. While the moiré and defect potentials in vdW heterostructures have been studied separately, their interplay remains largely unexplored. Here, we perform first-principles calculations to elucidate the interplay of the two potentials in determining the optoelectronic properties of twisted MoS 2 /WS 2 heterobilayers. The binding energy, charge density, localization, and hybridization of the moiré excitons can be modulated by the competition and cooperation of the two potentials. Their interplay can also be tuned by vertical electric fields, which can either de-trap the excitons or strongly localize them. One can further tailor the interplay of the two potentials via defect engineering to create one-dimensional exciton lattices with tunable orientations. Our work establishes defect engineering as a promising strategy to realize on-demand optoelectronic responses.more » « less
-
null (Ed.)Abstract The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and particularly under strain, as atomic relaxation prevails, the emergent moiré superlattice encodes elusive insights into the local interlayer interaction. Here we introduce moiré metrology as a combined experiment-theory framework to probe the stacking energy landscape of bilayer structures at the 0.1 meV/atom scale, outperforming the gold-standard of quantum chemistry. Through studying the shapes of moiré domains with numerous nano-imaging techniques, and correlating with multi-scale modelling, we assess and refine first-principle models for the interlayer interaction. We document the prowess of moiré metrology for three representative twisted systems: bilayer graphene, double bilayer graphene and H-stacked MoSe 2 /WSe 2 . Moiré metrology establishes sought after experimental benchmarks for interlayer interaction, thus enabling accurate modelling of twisted multilayers.more » « less
-
Moiré superlattices formed by twisting trilayers of graphene are a useful model for studying correlated electron behaviour and offer several advantages over their formative bilayer analogues, including a more diverse collection of correlated phases and more robust superconductivity. Spontaneous structural relaxation alters the behaviour of moiré superlattices considerably and has been suggested to play an important role in the relative stability of superconductivity in trilayers. Here we use an interferometric four-dimensional scanning transmission electron microscopy approach to directly probe the local graphene layer alignment over a wide range of trilayer graphene structures. Our results inform a thorough understanding of how reconstruction modulates the local lattice symmetries crucial for establishing correlated phases in twisted graphene trilayers, evincing a relaxed structure that is markedly different from that proposed previously.more » « less
-
Transition metal dichalcogenide (TMD) twisted homobilayers have been established as an ideal platform for studying strong correlation phenomena, as exemplified by the recent discovery of fractional Chern insulator (FCI) states in twisted MoTe21–4 and Chern insulators (CI)5 and unconventional superconductivity6,7 in twisted WSe2. In these systems, nontrivial topology in the strongly layer-hybridized regime can arise from a spatial patterning of interlayer tunneling amplitudes and layer-dependent potentials that yields a lattice of layer skyrmions. Here we report the direct observation of skyrmion textures in the layer degree of freedom of Rhombohedralstacked (R-stacked) twisted WSe2 homobilayers. This observation is based on scanning tunneling spectroscopy that separately resolves the G-valley and K-valley moiré electronic states. We show that G-valley states are subjected to a moiré potential with an amplitude of ~ 120 meV. At ~150 meV above the G-valley, the K-valley states are subjected to a weaker moiré potential of ~30 meV. Most significantly, we reveal opposite layer polarization of the K-valley at the MX and XM sites within the moiré unit cell, confirming the theoretically predicted skyrmion layer-texture. The dI/dV mappings allow the parameters that enter the continuum model for the description of moiré bands in twisted TMD bilayers to be determined experimentally, further establishing a direct correlation between the shape of LDOS profile in real space and topology of topmost moiré band.more » « less