skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Control of nuclear size by osmotic forces in Schizosaccharomyces pombe
The size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe . This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.  more » « less
Award ID(s):
2213583 1913093
PAR ID:
10415712
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A central question in eukaryotic cell biology asks, during cell division, how is the growth and distribution of organelles regulated to ensure each daughter cell receives an appropriate amount. For vacuoles in budding yeast, there are well described organelle-to-cell size scaling trends as well as inheritance mechanisms involving highly coordinated movements. It is unclear whether such mechanisms are necessary in the symmetrically dividing fission yeast,Schizosaccharomyces pombe, in which random partitioning may be utilized to distribute vacuoles to daughter cells. To address the increasing need for high-throughput analysis, we are augmenting existing semi-automated image processing by developing fully automated machine learning methods for locating vacuoles and segmenting fission yeast cells from brightfield and fluorescence micrographs. All strains studied show qualitative correlations in vacuole-to-cell size scaling trends, i.e. vacuole volume, surface area, and number all increase with cell size. Furthermore, increasing vacuole number was found to be a consistent mechanism for the increase in total vacuole size in the cell. Vacuoles are not distributed evenly throughout the cell with respect to available cytoplasm. Rather, vacuoles show distinct peaks in distribution close to the nucleus, and this preferential localization was confirmed in mutants in which nucleus position is perturbed. Disruption of microtubules leads to quantitative changes in both vacuole size scaling trends and distribution patterns, indicating the microtubule cytoskeleton is a key mechanism for maintaining vacuole structure.

     
    more » « less
  2. Martin, Sophie G (Ed.)
    Pkd2 is the fission yeast homolog of polycystins. This putative ion channel localizes to the plasma membrane. It is required for the expansion of cell volume during interphase growth and cytokinesis, the last step of cell division. However, the channel activity of Pkd2 remains untested. Here, we examined the calcium permeability and mechanosensitivity of Pkd2 through in vitro reconstitution and calcium imaging of the pkd2 mutant cells. Pkd2 was translated and inserted into the lipid bilayer of giant unilamellar vesicles using a cell-free expression system. The reconstituted Pkd2 permeated calcium when the membrane was stretched via hypo-osmotic shock. In vivo, inactivation of Pkd2 through a temperature-sensitive mutation pkd2-B42 reduced the average intracellular calcium level by 34%. Compared to the wild type, the hypomorphic mutation pkd2-81KD reduced the amplitude of hypo-osmotic shock-triggered calcium spikes by 59%. During cytokinesis, mutations of pkd2 reduced the calcium spikes accompanying cell separation and the ensuing membrane stretching by 60%. We concluded that fission yeast polycystin Pkd2 allows calcium influx when activated by membrane stretching, representing a likely mechanosensitive channel that contributes to the cytokinetic calcium spikes. 
    more » « less
  3. Cells migrate in vivo through complex confining microenvironments, which induce significant nuclear deformation that may lead to nuclear blebbing and nuclear envelope rupture. While actomyosin contractility has been implicated in regulating nuclear envelope integrity, the exact mechanism remains unknown. Here, we argue that confinement-induced activation of RhoA/myosin-II contractility, coupled with LINC complex-dependent nuclear anchoring at the cell posterior, locally increases cytoplasmic pressure and promotes passive influx of cytoplasmic constituents into the nucleus without altering nuclear efflux. Elevated nuclear influx is accompanied by nuclear volume expansion, blebbing, and rupture, ultimately resulting in reduced cell motility. Moreover, inhibition of nuclear efflux is sufficient to increase nuclear volume and blebbing on two-dimensional surfaces, and acts synergistically with RhoA/myosin-II contractility to further augment blebbing in confinement. Cumulatively, confinement regulates nuclear size, nuclear integrity, and cell motility by perturbing nuclear flux homeostasis via a RhoA-dependent pathway.

     
    more » « less
  4. Efficient delivery to the cell nucleus remains a significant challenge for many biomolecules, including anticancer drugs, proteins and DNAs. Despite numerous attempts to improve nuclear import including the use of nuclear localization signal (NLS) peptides and nanoparticle carriers, they are limited by the nanoparticle size, conjugation method, dependence on the functional nuclear import and intracellular trafficking mechanisms. To overcome these limitations, here we report that the nanomechanical force from plasmonic nanobubbles increases nuclear membrane permeability and promotes universal uptake of macromolecules into the nucleus, including macromolecules that are larger than the nuclear pore complex and would otherwise not enter the nucleus. Importantly, we show that plasmonic nanobubble-induced nanomechanical transduction significantly improves gene transfection and protein expression, compared to standard electroporation treatment alone. This novel nanomechanical transduction increases the size range and is broadly applicable for macromolecule delivery to the cell nucleus, leading to new opportunities and applications including for gene therapy and anticancer drug delivery. 
    more » « less
  5. null (Ed.)
    Abstract Phytoplankton biomass is routinely estimated using relationships between cell volume and carbon (C) and nitrogen (N) content that have been defined using diverse plankton that span orders of magnitude in size. Notably, volume has traditionally been estimated with geometric approximations of cell shape using cell dimensions from planar two-dimensional (2D) images, which requires assumptions about the third, depth dimension. Given advances in image processing, we examined how cell volumes determined from three-dimensional (3D), confocal images affected established relationships between phytoplankton cell volume and C and N content. Additionally, we determined that growth conditions could result in 30–40% variation in cellular N and C. 3D phytoplankton cell volume measurements were on average 15% greater than the geometric approximations from 2D images. Volume method variation was minimal compared to both intraspecific variation in volumes (~30%) and the 50-fold variation in elemental density among species. Consequently, C:vol and N:vol relationships were unaltered by volume measurement method and growth environment. Recent advances in instrumentation, including those for at sea and autonomous applications can be used to estimate plankton biomass directly. Going forward, we recommend instrumentation that permits species identification alongside size and shape characteristics for plankton biomass estimates. 
    more » « less