skip to main content

This content will become publicly available on January 4, 2024

Title: Mechanistical study on the formation of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH) along with their enol tautomers (prop-1-ene-1,2-diol (CH 3 C(OH)CHOH), prop-2-ene-1,2-diol (CH 2 C(OH)CH 2 OH), 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH)) in interstellar ice analogs
We unravel, for the very first time, the formation pathways of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH), as well as their enol tautomers within mixed ices of methanol (CH 3 OH) and acetaldehyde (CH 3 CHO) analogous to interstellar ices in the ISM exposed to ionizing radiation at ultralow temperatures of 5 K. Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) and isotopically labeled ices, the reaction products were selectively photoionized allowing for isomer discrimination during the temperature-programmed desorption phase. Based on the distinct mass-to-charge ratios and ionization energies of the identified species, we reveal the formation pathways of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH) via radical–radical recombination reactions and of their enol tautomers (prop-1-ene-1,2-diol (CH 3 C(OH)CHOH), prop-2-ene-1,2-diol (CH 2 C(OH)CH 2 OH), 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH)) via keto-enol tautomerization. To the best of our knowledge, 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH) are experimentally identified for the first time. Our findings help to constrain the formation mechanism of hydroxyacetone and more » methyl acetate detected within star-forming regions and suggest that the hitherto astronomically unobserved isomer 3-hydroxypropanal and its enol tautomers represent promising candidates for future astronomical searches. These enol tautomers may contribute to the molecular synthesis of biologically relevant molecules in deep space due to their nucleophilic character and high reactivity. « less
Authors:
; ; ; ; ; ;
Award ID(s):
2103269
Publication Date:
NSF-PAR ID:
10415830
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
2
Page Range or eLocation-ID:
936 to 953
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Carbonyl-bearing complex organic molecules (COMs) in the interstellar medium (ISM) are of significant importance due to their role as potential precursors to biomolecules. Simple aldehydes and ketones like acetaldehyde, acetone, and propanal have been recognized as fundamental molecular building blocks and tracers of chemical processes involved in the formation of distinct COMs in molecular clouds and star-forming regions. Although previous laboratory simulation experiments and modeling established the potential formation pathways of interstellar acetaldehyde and propanal, the underlying formation routes to the simplest ketone—acetone—in the ISM are still elusive. Herein, we performed a systematic study to unravel the synthesis of acetone, its propanal and propylene oxide isomers, as well as the propenol tautomers in interstellar analog ices composed of methane and acetaldehyde along with isotopic-substitution studies to trace the reaction pathways of the reactive intermediates. Chemical processes in the ices were triggered at 5.0 K upon exposure to proxies of Galactic cosmic rays in the form of energetic electrons. The products were detected isomer-selectively via vacuum ultraviolet (VUV) photoionization reflectron time-of-flight mass spectrometry. In our experiments, the branching ratio of acetone (CH3COCH3):propylene oxide (c-CH3CHOCH2):propanal (CH3CH2CHO) was determined to be (4.82 ± 0.05):(2.86 ± 0.13):1. The radical–radical recombination reaction leading tomore »acetone emerged as the dominant channel. The propenols appeared only at a higher radiation dose via keto–enol tautomerization. The current study provides mechanistic information on the fundamental nonequilibrium pathways that may be responsible for the formation of acetone and its (enol) isomers inside the interstellar icy grains.

    « less
  2. Geminal diols—organic molecules carrying two hydroxyl groups at the same carbon atom—have been recognized as key reactive intermediates by the physical (organic) chemistry and atmospheric science communities as fundamental transients in the aerosol cycle and in the atmospheric ozonolysis reaction sequence. Anticipating short lifetimes and their tendency to fragment to water plus the aldehyde or ketone, free geminal diols represent one of the most elusive classes of organic reactive intermediates. Here, we afford an exceptional glance into the preparation of the previously elusive methanediol [CH 2 (OH) 2 ] transient—the simplest geminal diol—via energetic processing of low-temperature methanol–oxygen ices. Methanediol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies. Electronic structure calculations reveal that methanediol is formed via excited state dynamics through insertion of electronically excited atomic oxygen into a carbon–hydrogen bond of the methyl group of methanol followed by stabilization in the icy matrix. The first preparation and detection of methanediol demonstrates its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition to formaldehyde and water. These findings advance our perception of the fundamental chemistry and chemical bonding of geminal diols and signify their role asmore »an efficient sink of aldehydes and ketones in atmospheric environments eventually coupling the atmospheric chemistry of geminal diols and Criegee intermediates.« less
  3. Abstract

    The formation of complex organic molecules by simulated secondary electrons generated in the track of galactic cosmic rays was investigated in interstellar ice analogs composed of methanol and carbon dioxide. The processed ices were subjected to temperature-programmed desorption to mimic the transition of a cold molecular cloud to a warmer star-forming region. Reaction products were detected as they sublime using photoionization reflectron time-of-flight mass spectrometry. By employing isotopic labeling, tunable photoionization and computed adiabatic ionization energies isomers of C2H4O3were investigated. Product molecules carbonic acid monomethyl ester (CH3OCOOH) and glycolic acid (HOCH2COOH) were identified. The abundance of the reactants detected in analog interstellar ices and the low irradiation dose necessary to form these products indicates that these molecules are exemplary candidates for interstellar detection. Molecules sharing a tautomeric relationship with glycolic acid, dihydroxyacetaldehyde ((OH)2CCHO), and the enol ethenetriol (HOCHC(OH)2), were not found to form despite ices being subjected to conditions that have successfully produced tautomerization in other ice analog systems.

  4. Methylamine (CH 3 NH 2 ) and methanimine (CH 2 NH) represent essential building blocks in the formation of amino acids in interstellar and cometary ices. In our study, by exploiting isomer selective detection of the reaction products via photoionization coupled with reflectron time of flight mass spectrometry (Re-TOF-MS), we elucidate the formation of methanimine and ethylenediamine (NH 2 CH 2 CH 2 NH 2 ) in methylamine ices exposed to energetic electrons as a proxy for secondary electrons generated by energetic cosmic rays penetrating interstellar and cometary ices. Interestingly, the two products methanimine and ethylenediamine are isoelectronic to formaldehyde (H 2 CO) and ethylene glycol (HOCH 2 CH 2 OH), respectively. Their formation has been confirmed in interstellar ice analogs consisting of methanol (CH 3 OH) which is ioselectronic to methylamine. Both oxygen-bearing species formed in methanol have been detected in the interstellar medium (ISM), while for methanimine and ethylenediamine only methanimine has been identified so far. In comparison with the methanol ice products and our experimental findings, we predict that ethylenediamine should be detectable in these astronomical sources, where methylamine and methanimine are present.
  5. Abstract

    Owing to the unique conditions in cold molecular clouds, enols—the thermodynamically less stable tautomers of aldehydes and ketones—do not undergo tautomerization to their more stable tautomers in the gas phase because they cannot overcome tautomerization barriers at the low temperatures. Laboratory studies of interstellar analog ices have demonstrated the formation of several keto–enol tautomer pairs in astrochemically relevant ice mixtures over the last years. However, so far only one of them, acetaldehyde−vinyl alcohol, has been detected in deep space. Due to their reactivity with electrophiles, enols can play a crucial role in our understanding of the molecular complexity in the interstellar medium and in comets and meteorites. To study the enolization of aldehydes in interstellar ices by interaction with galactic cosmic rays (GCRs), we irradiated acetaldehyde ices with energetic electrons as proxies of secondary electrons generated in the track of GCRs while penetrating interstellar ices. The results indicate that GCRs can induce enolization of acetaldehyde and that intra‐ as well as intermolecular processes are relevant. Therefore, enols should be ubiquitous in the interstellar medium and could be searched for using radio telescopes such as ALMA. Once enols are detected and abundances are established, they can serve as tracers formore »the non‐equilibrium chemistry in interstellar ices thus eventually constraining fundamental reaction mechanisms deep inside interstellar ices.

    « less