We combine 126 new galaxy-O
This study addresses how the incidence rate of strong O
- Award ID(s):
- 2044303
- PAR ID:
- 10415906
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 949
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 41
- Size(s):
- Article No. 41
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract vi absorber pairs from the CGM2survey with 123 pairs drawn from the literature to examine the simultaneous dependence of the column density of Ovi absorbers (N O VI) on galaxy stellar mass, star-formation rate, and impact parameter. The combined sample consists of 249 galaxy-Ovi absorber pairs coveringz = 0–0.6, with host galaxy stellar massesM *= 107.8–1011.2M ⊙and galaxy-absorber impact parametersR ⊥= 0–400 proper kiloparsecs. In this work, we focus on the variation ofN O VIwith galaxy mass and impact parameter among the star-forming galaxies in the sample. We find that the averageN O VIwithin one virial radius of a star-forming galaxy is greatest for star-forming galaxies withM *= 109.2–1010M ⊙. Star-forming galaxies withM *between 108and 1011.2M ⊙can explain most Ovi systems with column densities greater than 1013.5cm−2. Sixty percent of the Ovi mass associated with a star-forming galaxy is found within one virial radius, and 35% is found between one and two virial radii. In general, we find that some departure from hydrostatic equilibrium in the CGM is necessary to reproduce the observed Ovi amount, galaxy mass dependence, and extent. Our measurements serve as a test set for CGM models over a broad range of host galaxy masses. -
Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲
z ≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Ovi and Neviii absorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atz QSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Ovi λ λ 1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovi to a detection limit of . Meanwhile, only five galaxies or galaxy groups exhibit the Neviii λ λ 770, 780 doublet absorption, down to a limiting column density of . These Ovi - and Neviii -bearing halos reside in different galaxy environments with stellar masses ranging from to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Ovi absorption is broad withσ υ > 40 km s−1for galaxies of within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Ovi and Neviii is suggested to be the dominant phase in sub-L * galaxies with based on their high ionization fractions in the CGM. -
Abstract We make an in-depth analysis of different active galactic nuclei (AGN) jet models’ signatures, inducing quiescence in galaxies with a halo mass of 1012
M ⊙. Three jet models, including cosmic-ray-dominant, hot thermal, and precessing kinetic jets, are studied at two energy flux levels each, compared to a jet-free, stellar feedback-only simulation. Each of our simulations is idealized isolated galaxy simulations with AGN jet powers that are constant in time and generated using GIZMO and with FIRE stellar feedback. We examine the distribution of Mgii , Ovi , and Oviii ions, alongside gas temperature and density profiles. Low-energy ions, like Mgii , concentrate in the interstellar medium (ISM), while higher energy ions, e.g., Oviii , prevail at the AGN jet cocoon’s edge. High-energy flux jets display an isotropic ion distribution with lower overall density. High-energy thermal or cosmic-ray jets pressurize at smaller radii, significantly suppressing core density. The cosmic-ray jet provides extra pressure support, extending cool and warm gas distribution. A break in the ion-to-mass ratio slope in Ovi and Oviii is demonstrated in the ISM-to-circumgalactic medium (CGM) transition (between 10 and 30 kpc), growing smoothly toward the CGM at greater distances. -
Abstract Environment plays a critical role in shaping the assembly of low-mass galaxies. Here, we use the U
niverse Machine (UM) galaxy–halo connection framework and Data Release 3 of the Satellites Around Galactic Analogs (SAGA) Survey to place dwarf galaxy star formation and quenching into a cosmological context. UM is a data-driven forward model that flexibly parameterizes galaxy star formation rates (SFRs) using only halo mass and assembly history. We add a new quenching model to UM, tailored for galaxies withm ⋆≲ 109M ⊙, and constrain the model down tom ⋆≳ 107M ⊙using new SAGA observations of 101 satellite systems around Milky Way (MW)–mass hosts and a sample of isolated field galaxies in a similar mass range from the Sloan Digital Sky Survey. The new best-fit model, “UM-SAGA,” reproduces the satellite stellar mass functions, average SFRs, and quenched fractions in SAGA satellites while keeping isolated dwarfs mostly star-forming. The enhanced quenching in satellites relative to isolated field galaxies leads the model to maximally rely on halo assembly to explain the observed environmental quenching. Extrapolating the model down tom ⋆∼ 106.5M ⊙yields a quenched fraction of ≳30% for isolated field galaxies and ≳80% for satellites of MW-mass hosts at this stellar mass. Spectroscopic surveys can soon test this specific prediction to reveal the relative importance of internal feedback, cessation of mass and gas accretion, satellite-specific gas processes, and reionization for the evolution of faint low-mass galaxies. -
Abstract We analyze the cool gas in and around 14 nearby galaxies (at
z < 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi , Ni , Oi , and Ari ), low-ionization (Siii , Sii , Cii , Nii , and Feii ), and high-ionization (Siiii , Feiii , Nv , and Ovi ) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudy photoionization models. The Hi column density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forr ≳R e . Galaxies with higher stellar mass have weaker Hi absorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10R e . Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hi column density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM.