skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Decision Framework for Selecting Critically Important Nutrients from Aquatic Foods
Abstract Purpose of ReviewAquatic foods are increasingly being recognized as a diverse, bioavailable source of nutrients, highlighting the importance of fisheries and aquaculture for human nutrition. However, studies focusing on the nutrient supply of aquatic foods often differ in the nutrients they examine, potentially biasing their contribution to nutrition security and leading to ineffective policies or management decisions. Recent FindingsWe create a decision framework to effectively select nutrients in aquatic food research based on three key domains: human physiological importance, nutritional needs of the target population (demand), and nutrient availability in aquatic foods compared to other accessible dietary sources (supply). We highlight 41 nutrients that are physiologically important, exemplify the importance of aquatic foods relative to other food groups in the food system in terms of concentration per 100 g and apparent consumption, and provide future research pathways that we consider of high importance for aquatic food nutrition. SummaryOverall, our study provides a framework to select focal nutrients in aquatic food research and ensures a methodical approach to quantifying the importance of aquatic foods for nutrition security and public health.  more » « less
Award ID(s):
1826668 2121239
PAR ID:
10415925
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Current Environmental Health Reports
Volume:
10
Issue:
2
ISSN:
2196-5412
Page Range / eLocation ID:
p. 172-183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Over 2 billion people are unable to access safe, nutritious and sufficient food year-round. While global fisheries are considered key in providing essential nutrients to hundreds of millions of people around the globe, the specific contribution of small-scale fisheries to the nutrient supply given other available food supplies is unknown. Here, we combined multiple global databases to quantify the importance of marine small-scale fisheries to national-level nutrient supply of coastal populations. We found that, on average across assessed nutrients (iron, zinc, calcium, DHA + EPA and vitamins A and B12), small-scale fisheries contributed about 32% of overall global seafood nutrient supply, 17% of the nutrient supply from animal-sourced foods and 10% of nutrient supply from all foods. These global averages, however, underrepresent some key roles of ocean-based foods. Combining nutrient supply estimates with global estimates of inadequate nutrient intake, we found that about half of coastal countries that have a mean inadequate intake of at least 50% across assessed nutrients (iron, zinc, calcium, DHA + EPA and vitamins A and B12) rely on small scale fisheries for at least 15% of mean nutrient supply, and many rely on small scale fisheries for more than 30% of mean nutrient supply. Catch from small-scale fisheries is particularly important for the supply of vitamin B12, calcium and DHA + EPA, representing up to 100% of supply in selected countries. Our study demonstrates the significance of small-scale fisheries for nutritionally vulnerable coastal populations, emphasizing how effective fisheries management can contribute to public health. 
    more » « less
  2. The Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24) is a free dietary recall system that outputs fewer nutrients than the Nutrition Data System for Research (NDSR). NDSR uses the Nutrition Coordinating Center (NCC) Food and Nutrient Database, both of which require a license. Manual lookup of ASA24 foods into NDSR is time-consuming but currently the only way to acquire NCC-exclusive nutrients. Using lactose as an example, we evaluated machine learning and database matching methods to estimate this NCC-exclusive nutrient from ASA24 reports. ASA24-reported foods were manually looked up into NDSR to obtain lactose estimates and split into training (n = 378) and test (n = 189) datasets. Nine machine learning models were developed to predict lactose from the nutrients common between ASA24 and the NCC database. Database matching algorithms were developed to match NCC foods to an ASA24 food using only nutrients (“Nutrient-Only”) or the nutrient and food descriptions (“Nutrient + Text”). For both methods, the lactose values were compared to the manual curation. Among machine learning models, the XGB-Regressor model performed best on held-out test data (R2 = 0.33). For the database matching method, Nutrient + Text matching yielded the best lactose estimates (R2 = 0.76), a vast improvement over the status quo of no estimate. These results suggest that computational methods can successfully estimate an NCC-exclusive nutrient for foods reported in ASA24. 
    more » « less
  3. Auchtung, Jennifer M (Ed.)
    ABSTRACT Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea. A total of 20 LCM mice received 10 distinct human fecal slurries for ann= 2 mice per human gut microbiome; 9 LCM mice remained un-colonized with human slurries throughout the experiment. We performed untargeted metabolomics on green tea and plasma to identify green tea compounds that were found in the plasma of LCM and HU mice that had consumed green tea. 16S ribosomal RNA gene sequencing was performed on feces of all mice at study end to assess microbiome composition. We found multiple green tea compounds in plasma associated with microbiome presence and diversity (including acetylagmatine, lactiflorin, and aspartic acid negatively associated with diversity). Additionally, we detected strong associations between bioactive green tea compounds in plasma and specific gut bacteria, including associations between spiramycin andGemmigerand between wildforlide andAnaerorhabdus. Notably, some of the physiologically relevant green tea compounds are likely derived from plant-associated microbes, highlighting the importance of considering foods and food products as meta-organisms. Overall, we describe a novel workflow for discovering relationships between individual food compounds and the composition of the gut microbiome. IMPORTANCEFoods contain thousands of unique and biologically important compounds beyond the macro- and micro-nutrients listed on nutrition facts labels. In mammals, many of these compounds are metabolized or co-metabolized by the community of microbes in the colon. These microbes may impact the thousands of biologically important compounds we consume; therefore, understanding microbial metabolism of food compounds will be important for understanding how foods impact health. We used metabolomics to track green tea compounds in plasma of mice with and without complex microbiomes. From this, we can start to recognize certain groups of green tea-derived compounds that are impacted by mammalian microbiomes. This research presents a novel technique for understanding microbial metabolism of food-derived compounds in the gut, which can be applied to other foods. 
    more » « less
  4. Abstract Nutrition measurement has broad applications in science, ranging from dietary assessment, to food monitoring, personalized health, and more. Despite its importance, there are currently no tools that offer continuous cotracking of nutrients direct from food. In this study, the multiscale engineering of silk biopolymer‐interlayer sensors is reported for comonitoring of nutrients. By manipulating various nano‐ to mesostructural properties of such biosensors, sensors are obtained with programmable sensitivity and selectivity to salts, sugars, and oils/fats. Notably, this approach requires no specialized nanomaterials or delicate biomolecules. Programmable biosensors are further formatted for wireless readout and characteristics of these passive, wireless nutrient monitors are studied in vitro. As a proof of concept, the discrimination and comonitoring of salt, sugar, and fat content direct from real, complex foods such as milk, meat, soup, and tea drinks are demonstrated. It is anticipated that such sensors can be utilized in emerging dietary tools for applications across food tracking and human health. In addition, such strategies are expected in structural engineering of sensors to be adaptable to existing or emerging selective or partially selective sensors. 
    more » « less
  5. null (Ed.)
    ABSTRACT Water security is a powerful concept that is still in its early days in the field of nutrition. Given the prevalence and severity of water issues and the many interconnections between water and nutrition, we argue that water security deserves attention commensurate with its importance to human nutrition and health. To this end, we first give a brief introduction to water insecurity and discuss its conceptualization in terms of availability, access, use, and stability. We then lay out the empirical grounding for its assessment. Parallels to the food-security literature are drawn throughout, both because the concepts are analogous and food security is familiar to the nutrition community. Specifically, we review the evolution of scales to measure water and food security and compare select characteristics. We then review the burgeoning evidence for the causes and consequences of water insecurity and conclude with 4 recommendations: 1) collect more water-insecurity data (i.e., on prevalence, causes, consequences, and intervention impacts); 2) collect better data on water insecurity (i.e., measure it concurrently with food security and other nutritional indicators, measure intrahousehold variation, and establish baseline indicators of both water and nutrition before interventions are implemented); 3) consider food and water issues jointly in policy and practice (e.g., establish linkages and possibilities for joint interventions, recognize the environmental footprint of nutritional guidelines, strengthen the nutrition sensitivity of water-management practices, and use experience-based scales for improving governance and regulation across food and water systems); and 4) make findings easily available so that they can be used by the media, community organizations, and other scientists for advocacy and in governance (e.g., tracking progress towards development goals and holding implementers accountable). As recognition of the importance of water security grows, we hope that so too will the prioritization of water in nutrition research, funding, and policy. 
    more » « less