skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases
Macrophages can be characterized as a very multifunctional cell type with a spectrum of phenotypes and functions being observed spatially and temporally in various disease states. Ample studies have now demonstrated a possible causal link between macrophage activation and the development of autoimmune disorders. How these cells may be contributing to the adaptive immune response and potentially perpetuating the progression of neurodegenerative diseases and neural injuries is not fully understood. Within this review, we hope to illustrate the role that macrophages and microglia play as initiators of adaptive immune response in various CNS diseases by offering evidence of: (1) the types of immune responses and the processes of antigen presentation in each disease, (2) receptors involved in macrophage/microglial phagocytosis of disease-related cell debris or molecules, and, finally, (3) the implications of macrophages/microglia on the pathogenesis of the diseases.  more » « less
Award ID(s):
2054014
PAR ID:
10416056
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
24
Issue:
6
ISSN:
1422-0067
Page Range / eLocation ID:
5925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Macrophages perform critical functions for homeostasis and immune defense in tissues throughout the body. These innate immune cells are capable of recognizing and clearing dead cells and pathogens, and orchestrating inflammatory and healing processes that occur in response to injury. In addition, macrophages are involved in the progression of many inflammatory diseases including cardiovascular disease, fibrosis, and cancer. Although it has long been known that macrophages respond dynamically to biochemical signals in their microenvironment, the role of biophysical cues has only recently emerged. Furthermore, many diseases that involve macrophages are also characterized by changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, material topography, and applied mechanical forces, on macrophage behavior. We will also describe the role of molecules that are known to be important for mechanotransduction, including adhesion molecules, ion channels, as well as nuclear mediators such as transcription factors, scaffolding proteins, and epigenetic regulators. Together, this review will illustrate a developing role of biophysical cues in macrophage biology, and also speculate upon molecular targets that may potentially be exploited therapeutically to treat disease. 
    more » « less
  2. Macrophages are phagocytic innate immune cells capable of phenotypical switching in response to the local microenvironment. Studies often use either primary macrophages or immortalized cell lines for hypothesis testing, therapeutic assessment, and biomaterial evaluation without carefully considering the potential effects of cell source and tissue of origin, which strongly influence macrophage response. Surprisingly, limited information is available about how, under similar stimuli, immortalized cell lines and primary cells respond in both phenotypical and functional changes. To address this need, in this work, we cultured immortalized macrophage cell lines derived from different origins (i.e.,blood, lung, peritoneal) to understand and compare macrophage phenotypical responses, including polarization and plasticity, morphological changes, and phagocytic functionalities, as well as compared primary macrophages extracted from peritoneal and bone marrow to their immortalized cell line counterparts. We found significant differences in baseline expression of different markers (e.g., CD86, MHCII, CD206, and EGR2) amongst different cell lines, which further influence both polarization and repolarization of the cells, in addition to their phagocytic functionality. Additionally, we observed that, while RAW 264.7 cells behave similarly to the primary bone marrow-derived macrophages, there are noticeable phenotypical and functional differences in cell line (IC-21) and primary peritoneal macrophages, highlighting tissue-specific differences in macrophage response amongst cell lines and primary cells. Moving to three-dimensional (3D) culture in well-defined biomaterials, blood-derived primary and cell line macrophages were encapsulated within hydrogel-based synthetic extracellular matrices and their polarization profiles and cell morphologies were compared. Macrophages exhibited less pronounced polarization during 3D culture in these compliant, soft materials compared to two-dimensional (2D) culture on rigid, tissue culture plastic plates. Overall, our findings highlight origin-specific differences in macrophage response, and therefore, careful considerations must be made to identify the appropriate cell source for the application of interest. 
    more » « less
  3. Macrophages are critical to the formation of infection- and non-infection-associated immune structures such as cancer spheroids, pathogen-, and non-pathogen-associated granulomas, contributing to the spatiotemporal and chemical immune response and eventual outcome of disease. While well established in cancer immunology, the prevalence of using three-dimensional (3D) cultures to characterize later-stage structural immune response in pathogen-associated granulomas continues to increase, generating valuable insights for empirical and computational analysis. To enable integration of data from 3D in vitro studies with the vast bibliome of standard two-dimensional (2D) tissue culture data, methods that determine concordance between 2D and 3D immune response need to be established. Focusing on macrophage migration and oxidative species production, we develop experimental and computational methods to enable concurrent spatiotemporal and biochemical characterization of 2D versus 3D macrophage–mycobacterium interaction. We integrate standard biological sampling methods, time-lapse confocal imaging, and 4D quantitative image analysis to develop a 3D ex vivo model of Mycobacterium smegmatis infection using bone-marrow-derived macrophages (BMDMs) embedded in reconstituted basement membrane (RBM). Comparing features of 2D to 3D macrophage response that contribute to control and resolution of bacteria infection, we determined that macrophages in 3D environments increased production of reactive species, motility, and differed in cellular volume. Results demonstrate a viable and extensible approach for comparison of 2D and 3D datasets and concurrent biochemical plus spatiotemporal characterization of initial macrophage structural response during infection. 
    more » « less
  4. The innate immune system initiates early response to infection by sensing molecular patterns of infection through pattern-recognition receptors (PRRs). Previous work on PRR stimulation of macrophages revealed significant heterogeneity in single cell responses, suggesting the importance of individual macrophage stimulation. Current methods either isolate individual macrophages or stimulate a whole culture and measure individual readouts. We probed single cell NF-κB responses to localized stimuli within a naïve culture with Fluidic Force Microscopy (FluidFM). Individual cells stimulated in naïve culture were more sensitive compared to individual cells in uniformly stimulated cultures. In cluster stimulation, NF-κB activation decreased with increased cell density or decreased stimulation time. Our results support the growing body of evidence for cell-to-cell communication in macrophage activation, and limit potential mechanisms. Such a mechanism might be manipulated to tune macrophage sensitivity, and the density-dependent modulation of sensitivity to PRR signals could have relevance to biological situations where macrophage density increases. 
    more » « less
  5. null (Ed.)
    Abstract Background Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage activations will have a significant impact on disease progression and therapeutic strategy. Mathematical modeling of macrophage activation can improve the understanding of this biological process through quantitative analysis and provide guidance to facilitate future experimental design. However, few results have been reported for a complete model of macrophage activation patterns. Results We globally searched and reviewed literature for macrophage activation from PubMed databases and screened the published experimental results. Temporal in vitro macrophage cytokine expression profiles from published results were selected to establish Boolean network models for macrophage activation patterns in response to three different stimuli. A combination of modeling methods including clustering, binarization, linear programming (LP), Boolean function determination, and semi-tensor product was applied to establish Boolean networks to quantify three macrophage activation patterns. The structure of the networks was confirmed based on protein-protein-interaction databases, pathway databases, and published experimental results. Computational predictions of the network evolution were compared against real experimental results to validate the effectiveness of the Boolean network models. Conclusion Three macrophage activation core evolution maps were established based on the Boolean networks using Matlab. Cytokine signatures of macrophage activation patterns were identified, providing a possible determination of macrophage activations using extracellular cytokine measurements. 
    more » « less