skip to main content


Title: Spectrally adapted physics-informed neural networks for solving unbounded domain problems
Abstract

Solving analytically intractable partial differential equations (PDEs) that involve at least one variable defined on an unbounded domain arises in numerous physical applications. Accurately solving unbounded domain PDEs requires efficient numerical methods that can resolve the dependence of the PDE on the unbounded variable over at least several orders of magnitude. We propose a solution to such problems by combining two classes of numerical methods: (i) adaptive spectral methods and (ii) physics-informed neural networks (PINNs). The numerical approach that we develop takes advantage of the ability of PINNs to easily implement high-order numerical schemes to efficiently solve PDEs and extrapolate numerical solutions at any point in space and time. We then show how recently introduced adaptive techniques for spectral methods can be integrated into PINN-based PDE solvers to obtain numerical solutions of unbounded domain problems that cannot be efficiently approximated by standard PINNs. Through a number of examples, we demonstrate the advantages of the proposed spectrally adapted PINNs in solving PDEs and estimating model parameters from noisy observations in unbounded domains.

 
more » « less
PAR ID:
10416140
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Machine Learning: Science and Technology
Volume:
4
Issue:
2
ISSN:
2632-2153
Page Range / eLocation ID:
Article No. 025024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving timedependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems. 
    more » « less
  2. Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving timedependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems. 
    more » « less
  3. This paper proposes a scalable learning framework to solve a system of coupled forward–backward partial differential equations (PDEs) arising from mean field games (MFGs). The MFG system incorporates a forward PDE to model the propagation of population dynamics and a backward PDE for a representative agent’s optimal control. Existing work mainly focus on solving the mean field game equilibrium (MFE) of the MFG system when given fixed boundary conditions, including the initial population state and terminal cost. To obtain MFE efficiently, particularly when the initial population density and terminal cost vary, we utilize a physics-informed neural operator (PINO) to tackle the forward–backward PDEs. A learning algorithm is devised and its performance is evaluated on one application domain, which is the autonomous driving velocity control. Numerical experiments show that our method can obtain the MFE accurately when given different initial distributions of vehicles. The PINO exhibits both memory efficiency and generalization capabilities compared to physics-informed neural networks (PINNs).

     
    more » « less
  4. Abstract Fractional PDEs have recently found several geophysics and imaging science applications due to their nonlocal nature and their flexibility in capturing sharp transitions across interfaces.However, this nonlocality makes it challenging to design efficient solvers for such problems.In this paper, we introduce a spectral method based on an ultraspherical polynomial discretization of the Caffarelli–Silvestre extension to solve such PDEs on rectangular and disk domains.We solve the discretized problem using tensor equation solvers and thus can solve higher-dimensional PDEs.In addition, we introduce both serial and parallel domain decomposition solvers.We demonstrate the numerical performance of our methods on a 3D fractional elliptic PDE on a cube as well as an application to optimization problems with fractional PDE constraints. 
    more » « less
  5. In uncertainty quantification, it is commonly required to solve a forward model consisting of a partial differential equation (PDE) with a spatially varying uncertain coefficient that is represented as an affine function of a set of random variables, or parameters. Discretizing such models using stochastic Galerkin finite element methods (SGFEMs) leads to very high-dimensional discrete problems that can be cast as linear multi-term matrix equations (LMTMEs). We develop efficient computational methods for approximating solutions of such matrix equations in low rank. To do this, we follow an alternating energy minimization (AEM) framework, wherein the solution is represented as a product of two matrices, and approximations to each component are sought by solving certain minimization problems repeatedly. Inspired by proper generalized decomposition methods, the iterative solution algorithms we present are based on a rank-adaptive variant of AEM methods that successively computes a rank-one solution component at each step. We introduce and evaluate new enhancement procedures to improve the accuracy of the approximations these algorithms deliver. The efficiency and accuracy of the enhanced AEM methods is demonstrated through numerical experiments with LMTMEs associated with SGFEM discretizations of parameterized linear elliptic PDEs. 
    more » « less