skip to main content


Title: Ultra-thin silver films grown by sputtering with a soft ion beam-treated intermediate layer
Abstract

Silver thin films have wide-ranging applications in optical coatings and optoelectronic devices. However, their poor wettability to substrates such as glass often leads to an island growth mode, known as the Volmer–Weber mode. This study demonstrates a method that utilizes a low-energy ion beam (IB) treatment in conjunction with magnetron sputtering to fabricate continuous silver films as thin as 6 nm. A single-beam ion source generates low-energy soft ions to establish a nominal 1 nm seed silver layer, which significantly enhances the wettability of the subsequently deposited silver films, resulting in a continuous film of approximately 6 nm with a resistivity as low as 11.4µΩ.cm. The transmittance spectra of these films were found to be comparable to simulated results, and the standard 100-grid tape test showed a marked improvement in adhesion to glass compared to silver films sputter-deposited without the IB treatment. High-resolution scanning electron microscopy images of the early growth stage indicate that the IB treatment promotes nucleation, while films without the IB treatment tend to form isolated islands. X-ray diffraction patterns indicate that the (111) crystallization is suppressed by the soft IB treatment, while growth of large crystals with (200) orientation is strengthened. This method is a promising approach for the fabrication of silver thin films with improved properties for use in optical coatings and optoelectronics.

 
more » « less
NSF-PAR ID:
10420783
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
56
Issue:
36
ISSN:
0022-3727
Page Range / eLocation ID:
Article No. 365501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A single-beam ion source was developed and used in combination with magnetron sputtering to modulate the film microstructure. The ion source emits a single beam of ions that interact with the deposited film and simultaneously enhances the magnetron discharge. The magnetron voltage can be adjusted over a wide range, from approximately 240 to 130 V, as the voltage of the ion source varies from 0 to 150 V, while the magnetron current increases accordingly. The low-voltage high-current magnetron discharge enables a ‘soft sputtering mode’, which is beneficial for thin-film growth. Indium tin oxide (ITO) thin films were deposited at room temperature using a combined single-beam ion source and magnetron sputtering. The ion beam resulted in the formation of polycrystalline ITO thin films with significantly reduced resistivity and surface roughness. Single-beam ion-source-enhanced magnetron sputtering has many potential applications in which low-temperature growth of thin films is required, such as coatings for organic solar cells. 
    more » « less
  2. A single-beam plasma source was developed and used to deposit hydrogenated amorphous carbon (a-C:H) thin films at room temperature. The plasma source was excited by a combined radio frequency and direct current power, which resulted in tunable ion energy over a wide range. The plasma source could effectively dissociate the source hydrocarbon gas and simultaneously emit an ion beam to interact with the deposited film. Using this plasma source and a mixture of argon and C2H2 gas, a-C:H films were deposited at a rate of ∼26 nm/min. The resulting a-C:H film of 1.2 µm thick was still highly transparent with a transmittance of over 90% in the infrared range and an optical bandgap of 2.04 eV. Young’s modulus of the a-C:H film was ∼80 GPa. The combination of the low-temperature high-rate deposition of transparent a-C:H films with moderately high Young’s modulus makes the single-beam plasma source attractive for many coatings applications, especially in which heat-sensitive and soft materials are involved. The single-beam plasma source can be configured into a linear structure, which could be used for large-area coatings.

     
    more » « less
  3. We theoretically and experimentally investigate Tamm plasmon (TP) modes in a metal/semiconductor distributed Bragg reflector (DBR) interface. A thin Ag (silver) layer with a thickness (55 nm from simulation) that is optimized to guarantee a low reflectivity at the resonance was deposited on nanoporous GaN DBRs fabricated using electrochemical (EC) etching on freestanding semipolar (2021¯<#comment/>) GaN substrates. The reflectivity spectra of the DBRs are compared before and after the Ag deposition and with that of a blanket Ag layer deposited on GaN. The experimental results indicate the presence of a TP mode at ∼ 454 nm on the structure after the Ag deposition, which is also supported by theoretical calculations using a transfer-matrix algorithm. The results from mode dispersion with energy-momentum reflectance spectroscopy measurements also support the presence of a TP mode at the metal-nanoporous GaN DBR interface. An active medium can also be accommodated within the mode for optoelectronics and photonics. Moreover, the simulation results predict a sensitivity of the TP mode wavelength to the ambient (∼ 4-7 nm shift when changing the ambient within the pores from air withn = 1 to isopropanoln = 1.3), suggesting an application of the nanoporous GaN-based TP structure for optical sensing.

     
    more » « less
  4. Flexible optics and optoelectronic devices require stretchable and compliant antireflection coatings (ARC). Conventional optical coatings, typically inorganic thin films, are brittle and crack under strain, while porous or patterned surfaces often lack environmental endurance and/or involve complex processing. Polymeric optical thin films prepared by initiated chemical vapor deposition (iCVD) comprise a promising alternative class of materials. With iCVD, multilayered, uniform thin film coatings can be synthesized conformally on the surface of a temperature-sensitive substrate near room temperature with precise compositional and thickness control. In this study, a model two-layer coating design consisting of poly(1 H ,1 H ,6 H ,6 H -perfluorohexyl diacrylate) (pPFHDA) with a refractive index at 633 nm of n 633 = 1.426 was deposited atop poly(4-vinylpyridine) (p4VP, n 633 = 1.587). Broadband antireflection over the visible wavelength range (400–750 nm) was conferred to a transparent, flexible thermoplastic polyurethane (TPU) substrate ( n 633 ∼ 1.51), reducing the front-surface reflectance from ∼4% to ∼2%. The superior mechanical compliance of polymer ARCs over conventional inorganic coatings (MgF 2 , SiO 2 , and Al 2 O 3 ) on the TPU substrate was thoroughly investigated by monitoring the evolution of film morphology and tensile fracture with applied equibiaxial strain. The polymer ARC withstood at least ε = 1.64% equibiaxial strain without fracture, while all inorganic coatings cracked. Through a repeated application of strain over hundreds of cycles, the antireflection by the polymer film was shown to possess excellent stability and fatigue resilience. Finally, simulations of established iCVD polymer chemistries possessing larger index contrast revealed that reflectance can be further reduced to <1% or better. 
    more » « less
  5. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less