The circadian clock is a conserved timekeeping mechanism that is essential for integrating different environmental cues such as light and temperature to coordinate biological processes with the time of day. While much is known about transcriptional regulation by the clock, the role of post-transcriptional regulation, particularly through sequestration into biomolecular condensate such as stress granules, remains less understood. Stress granules are dynamic RNA-protein assemblies that play a critical role in the cellular response to stress by sequestering mRNAs to regulate translation during stressful conditions. In animals and fungi, the circadian clock regulates stress granule formation and mRNA translation by controlling key factors such as eIF2α, which orchestrates the rhythmic sequestration and translation of specific mRNAs. In plants, it has been shown that some transcripts, despite coming from arrhythmic expression, are rhythmically translated. In addition, some clock-controlled genes (CCGs) are induced in response to heat stress only at the transcriptional level and not at the translational level. Together this highlights a layer of clock regulation beyond transcription. This review discusses the intersection between the circadian clock and heat stress-related biomolecular condensates across eukaryotes, with a particular focus on plants. We discuss how the clock may regulate stress granule dynamics and preferential translation of mRNAs at specific times of the day or during stress responses, thereby enhancing cellular function and energy efficiency. By integrating evidence from animals, fungi, and plants, we highlight emerging questions regarding the role of biomolecular condensates as post-transcriptional mechanisms in controlling circadian rhythms and stress tolerance in plants.
more »
« less
Stress-related biomolecular condensates in plants
Abstract Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, two of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies, in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.
more »
« less
- Award ID(s):
- 2226270
- PAR ID:
- 10416281
- Date Published:
- Journal Name:
- The Plant Cell
- ISSN:
- 1040-4651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Macroscopic membraneless organelles containing RNA such as the nucleoli, germ granules, and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can be formed by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with the transcription of genes. This brief article summarizes thoughts about the importance of condensates in the regulation of transcription and how RNA molecules, as components of such condensates, control the synthesis of RNA. Models and experimental data suggest that RNAs from enhancers facilitate the formation of a condensate that stabilizes the binding of transcription factors and accounts for a burst of transcription at the promoter. Termination of this burst is pictured as a nonequilibrium feedback loop where additional RNA destabilizes the condensate.more » « less
-
Zlotorynski, Eytan (Ed.)Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.more » « less
-
null (Ed.)RNA granules, such as stress granules and processing bodies, can balance the storage, degradation, and translation of mRNAs in diverse eukaryotic organisms. The sessile nature of plants demands highly versatile strategies to respond to environmental fluctuations. In this review, we discuss recent findings of the dynamics and functions of these RNA granules in plants undergoing developmental reprogramming or responding to environmental stresses. Special foci include the dynamic assembly, disassembly, and regulatory roles of these RNA granules in determining the fate of mRNAs.more » « less
-
null (Ed.)Abstract Biomolecular condensates are dynamic nonmembranous structures that seclude and concentrate molecules involved in related biochemical and molecular processes. Recent studies have revealed that a surprisingly large number of fundamentally important cellular processes are driven and regulated by this potentially ancient biophysical principle. Here, we summarize critical findings and new insights from condensate studies that are related to plant immunity. We discuss the role of stress granules and newly identified biomolecular condensates in coordinating plant immune responses and plant–microbe interactions.more » « less
An official website of the United States government

