skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems
Hybrid storage systems are prevalent in most large scale enterprise storage systems since they balance storage performance, storage capacity and cost. The goal of such systems is to serve the majority of the I/O requests from high-performance devices and store less frequently used data in low-performance devices. A large data migration volume between tiers can cause a huge overhead in practical hybrid storage systems. Therefore, how to balance the trade-off between the migration cost and potential performance gain is a challenging and critical issue in hybrid storage systems. In this paper, we focused on the data migration problem of hybrid storage systems with two classes of storage devices. A machine learning-based migration algorithm called K-Means assisted Support Vector Machine (K-SVM) migration algorithm is proposed. This algorithm is capable of more precisely classifying and efficiently migrating data between performance and capacity tiers. Moreover, this KSVM migration algorithm involves a K-Means clustering algorithm to dynamically select a proper training dataset such that the proposed algorithm can significantly reduce the volume of migrating data. Finally, the real implementation results indicate that the ML-based algorithm reduces the migration data volume by about 40% and achieves 70% lower latency than other algorithms.  more » « less
Award ID(s):
2204656
PAR ID:
10416298
Author(s) / Creator(s):
Date Published:
Journal Name:
16th IEEE International Conference on Networking, Architecture, and Storage (NAS 2022).
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybrid storage systems are prevalent in most largescale enterprise storage systems since they balance storage performance, storage capacity and cost. The goal of such systems is to serve the majority of the I/O requests from high-performance devices and store less frequently used data in low-performance devices. A large data migration volume between tiers can cause a huge overhead in practical hybrid storage systems. Therefore, how to balance the trade-off between the migration cost and potential performance gain is a challenging and critical issue in hybrid storage systems. In this paper, we focused on the data migration problem of hybrid storage systems with two classes of storage devices. A machine learning-based migration algorithm called K-Means assisted Support Vector Machine (K-SVM) migration algorithm is proposed. This algorithm is capable of more precisely classifying and efficiently migrating data between performance and capacity tiers. Moreover, this KSVM migration algorithm involves a K-Means clustering algorithm to dynamically select a proper training dataset such that the proposed algorithm can significantly reduce the volume of migrating data. Finally, the real implementation results indicate that the ML-based algorithm reduces the migration data volume by about 40% and achieves 70% lower latency than other algorithms. 
    more » « less
  2. In recent years, emerging storage hardware technologies have focused on divergent goals: better performance or lower cost-per-bit. Correspondingly, data systems that employ these technologies are typically optimized either to be fast (but expensive) or cheap (but slow). We take a different approach: by architecting a storage engine to natively utilize two tiers of fast and low-cost storage technologies, we can achieve a Pareto efficient balance between performance and cost-per-bit. This paper presents the design and implementation of PrismDB, a novel key-value store that exploits two extreme ends of the spectrum of modern NVMe storage technologies (3D XPoint and QLC NAND) simultaneously. Our key contribution is how to efficiently migrate and compact data between two different storage tiers. Inspired by the classic cost-benefit analysis of log cleaning, we develop a new algorithm for multi-tiered storage compaction that balances the benefit of reclaiming space for hot objects in fast storage with the cost of compaction I/O in slow storage. Compared to the standard use of RocksDB on flash in datacenters today, PrismDB’s average throughput on tiered storage is 3.3x faster, its read tail latency is 2x better, and it is 5x more durable using equivalently-priced hardware. 
    more » « less
  3. Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updating or tiering-based, synchronous mechanisms to tackle the straggler problem. However, asynchronous methods can easily create a communication bottleneck, while tiering may introduce biases that favor faster tiers with shorter response latencies. To address these issues, we present FedAT, a novel Federated learning system with Asynchronous Tiers under Non-i.i.d. training data. FedAT synergistically combines synchronous, intra-tier training and asynchronous, cross-tier training. By bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic to steer and balance the training across clients for further accuracy improvement. FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based compression algorithm, which minimizes the communication cost. Results show that FedAT improves the prediction performance by up to 21.09% and reduces the communication cost by up to 8.5×, compared to state-of-the-art FL methods. 
    more » « less
  4. Federated Learning (FL) revolutionizes collaborative machine learning among Internet of Things (IoT) devices by enabling them to train models collectively while preserving data privacy. FL algorithms fall into two primary categories: synchronous and asynchronous. While synchronous FL efficiently handles straggler devices, its convergence speed and model accuracy can be compromised. In contrast, asynchronous FL allows all devices to participate but incurs high communication overhead and potential model staleness. To overcome these limitations, the paper introduces a semi-synchronous FL framework that uses client tiering based on computing and communication latencies. Clients in different tiers upload their local models at distinct frequencies, striking a balance between straggler mitigation and communication costs. Building on this, the paper proposes the Dynamic client clustering, bandwidth allocation, and local training for semi-synchronous Federated learning (DecantFed) algorithm to dynamically optimize client clustering, bandwidth allocation, and local training workloads in order to maximize data sample processing rates in FL. DecantFed dynamically optimizes client clustering, bandwidth allocation, and local training workloads for maximizing data processing rates in FL. It also adapts client learning rates according to their tiers, thus addressing the model staleness issue. Extensive simulations using benchmark datasets like MNIST and CIFAR-10, under both IID and non-IID scenarios, demonstrate DecantFed’s superior performance. It outperforms FedAvg and FedProx in convergence speed and delivers at least a 28% improvement in model accuracy, compared to FedProx. 
    more » « less
  5. Storing tabular data to balance storage and query efficiency is a long-standing research question in the database community. In this work, we argue and show that a novel DeepMapping abstraction, which relies on the impressive memorization capabilities of deep neural networks, can provide better storage cost, better latency, and better run-time memory footprint, all at the same time. Such unique properties may benefit a broad class of use cases in capacity-limited devices. Our proposed DeepMapping abstraction transforms a dataset into multiple key-value mappings and constructs a multi-tasking neural network model that outputs the corresponding values for a given input key. To deal with memorization errors, DeepMapping couples the learned neural network with a lightweight auxiliary data structure capable of correcting mistakes. The auxiliary structure design further enables DeepMapping to efficiently deal with insertions, deletions, and updates even without retraining the mapping. We propose a multi-task search strategy for selecting the hybrid DeepMapping structures (including model architecture and auxiliary structure) with a desirable trade-off among memorization capacity, size, and efficiency. Extensive experiments with a real-world dataset, synthetic and benchmark datasets, including TPC-H and TPC-DS, demonstrated that the DeepMapping approach can better balance the retrieving speed and compression ratio against several cutting-edge competitors. 
    more » « less