skip to main content


This content will become publicly available on May 27, 2024

Title: Why do viruses make aphids winged?
Abstract

Aphids are hosts to diverse viruses and are important vectors of plant pathogens. The spread of viruses is heavily influenced by aphid movement and behaviour. Consequently, wing plasticity (where individuals can be winged or wingless depending on environmental conditions) is an important factor in the spread of aphid‐associated viruses. We review several fascinating systems where aphid‐vectored plant viruses interact with aphid wing plasticity, both indirectly by manipulating plant physiology and directly through molecular interactions with plasticity pathways. We also cover recent examples where aphid‐specific viruses and endogenous viral elements within aphid genomes influence wing formation. We discuss why unrelated viruses with different transmission modes have convergently evolved to manipulate wing formation in aphids and whether this is advantageous for both host and virus. We argue that interactions with viruses are likely shaping the evolution of wing plasticity within and across aphid species, and we discuss the potential importance of these findings for aphid biocontrol.

 
more » « less
Award ID(s):
2152954
NSF-PAR ID:
10416335
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Insect Molecular Biology
Volume:
32
Issue:
6
ISSN:
0962-1075
Format(s):
Medium: X Size: p. 575-582
Size(s):
["p. 575-582"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Environmental stressors can be key drivers of phenotypes, including reproductive strategies and morphological traits. The response to stress may be altered by the presence of microbial associates. For example, in aphids, facultative (secondary) bacterial symbionts can provide protection against natural enemies and stress induced by elevated temperatures. Furthermore, aphids exhibit phenotypic plasticity, producing winged (rather than wingless) progeny that may be better able to escape danger, and the combination of these factors improves the response to stress. How symbionts and phenotypic plasticity, both of which shape aphids’ stress response, influence one another, and together influence host fitness, remains unclear.

    In this study, we investigate how environmental stressors drive shifts in fecundity and winged/wingless offspring production, and how secondary symbionts influence the process. We induced production of winged offspring through distinct environmental stressors, including exposure to aphid alarm pheromone and crowding, and, in one experiment, we assessed whether the aphid response is influenced by host plant.

    In the winged morph, energy needed for wing maintenance may lead to trade‐offs with other traits, such as reproduction or symbiont maintenance. Potential trade‐offs between symbiont maintenance and fitness have been proposed but have not been tested. Thus, beyond studying the production of offspring of alternative morphs, we also explore the influence of symbionts across wing/wingless polyphenism as well as symbiont interaction with cross‐generational impacts of environmental stress on reproductive output.

    All environmental stressors resulted in increased production of winged offspring and shifts in fecundity rates. Additionally, in some cases, aphid host‐by‐symbiont interactions influenced fecundity. Stress on first‐generation aphids had cross‐generational impacts on second‐generation adults, and the impact on fecundity was further influenced by the presence of secondary symbionts and presence/absence of wings.

    Our study suggests a complex interaction between beneficial symbionts and environmental stressors. Winged aphids have the advantage of being able to migrate out of danger with more ease, but energy needed for wing production and maintenance may come with reproductive costs for their mothers and for themselves, where in certain cases, these costs are altered by secondary symbionts.

     
    more » « less
  2. Genetic variation within a dominant riparian forest tree affects susceptibility to a leaf-galling aphid (Pemphigus betae), which induces phytochemical and structural changes in leaf tissue. Research Highlights: We show here that these changes to tree leaf tissue alter adjacent in-stream leaf litter decomposition rates and the aquatic macroinvertebrate community associated with litter in the stream for some Populus genotypes. Background and Objectives: Naturally occurring hybrid cottonwoods (Populus fremontii × Populus angustifolia) are differentially susceptible to aphid attack and vary in induced phytochemistry following attack. When leaves are galled by aphids, foliar tissue is altered structurally (through the formation of pea-sized gall structures) and phytochemically (through an increase in foliar condensed tannin concentrations). Materials and Methods: To examine the effect of aphid-galled leaves on forest stream processes, we collected both galled and un-galled leaves from five clones of three hybrid cottonwood genotypes in an experimental forest. We measured in-stream litter decomposition rates, aquatic fungal biomass and aquatic macroinvertebrate community composition. Results: Decomposition rates differed among genotypes and the galled litter treatments, with a 27% acceleration of decomposition rate for the galled litter of one genotype compared to its own un-galled litter and no differences between galled and un-galled litters for the other two genotypes. Genotype by foliar gall status interactions also occurred for measures of phytochemistry, indicating a prevalence of complex interactions. Similarly, we found variable responses in the macroinvertebrate community, where one genotype demonstrated community differences between galled and un-galled litter. Conclusions: These data suggest that plant genetics and terrestrial forest herbivory may be important in linking aquatic and terrestrial forest processes and suggest that examination of decomposition at finer scales (e.g., within species, hybrids and individuals) reveals important ecosystem patterns. 
    more » « less
  3. Abstract

    In many organisms, phenotype and fitness are strongly influenced by both current environmental factors and maternal effects. The low genetic variation, high phenotypic plasticity, and telescoping generations seen in aphids permit us to investigate the relative importance and potential interaction of maternal and current environments on phenotype. Although past studies have identified an influence of maternal host plant on offspring phenotype and reproduction in aphids, few have demonstrated the potential for these maternal effects to also interact with the aphid's current environment. By rearing multiple generations ofAphis nerii(Fonscolombe) (Hemiptera: Aphididae) on their host common milkweed,Asclepias syriaca(L.) (Apocynaceae), we tested the relative influence and interaction of both maternal and current environmental effects of crowding and plant quality on aphid body size and reproduction. Our results indicate that aphid body size increased with current plant quality and decreased with aphid density in both generations, with an additional direct, positive relationship between body size and fecundity. We did not find evidence for adaptive maternal effects, e.g., production of fewer, larger, offspring by stressed mothers. Instead, poor maternal environments constrained aphid body size and reproduction. Importantly, these adverse maternal effects were only seen in offspring where subsequent nymph population growth was allowed to increase unchecked, likely reducing available resources. Our study thus demonstrates that the significance of maternal effects in aphid development and reproduction can depend on current resource availability, shaping the phenotype and fecundity of offspring under stressful conditions. Incorporating this framework for how aphid body size and reproduction respond to current and maternal environments may improve predictions for how aphid population growth is impacted by resource limitation across generations.

     
    more » « less
  4. Abstract

    Aphids represent a major threat to crops. Hundreds of different viruses are aphid-borne. Upon aphid attack, plants release volatile organic compounds (VOCs) as airborne alarm signals to turn on the airborne defense (AD) of neighboring plants, thereby repelling aphids as well as reducing aphid fitness and virus transmission. This phenomenon provides a critical community-wide plant protection to fend off aphids, but the underlying molecular basis remains undetermined for a long time. In a recent article, Gong et al. established theNAC2-SAMT1module as the core component regulating the emission of methyl-salicylate (MeSA), a major component of VOCs in aphid-attacked plants. Furthermore, they showed that SABP2 protein is critical for the perception of volatile MeSA signal by converting MeSA to Salicylic Acid (SA), which is the cue to elicit AD against aphids at the community level. Moreover, they showed that multiple viruses use a conserved glycine residue in the ATP-dependent helicase domain in viral proteins to shuttle NAC2 from the nucleus to the cytoplasm for degradation, leading to the attenuation of MeSA emission and AD. These findings illuminate the functional roles of key regulators in the complex MeSA-mediated airborne defense process and a counter-defense mechanism used by viruses, which has profound significance in advancing the knowledge of plant-pathogen interactions as well as providing potential targets for gene editing-based crop breeding.

     
    more » « less
  5. Abstract

    Poleroviruses, enamoviruses, and luteoviruses are icosahedral, positive sense RNA viruses that cause economically important diseases in food and fiber crops. They are transmitted by phloem-feeding aphids in a circulative manner that involves the movement across and within insect tissues. The N-terminal portion of the viral readthrough domain (NRTD) has been implicated as a key determinant of aphid transmission in each of these genera. Here, we report crystal structures of theNRTDs from the poleroviruses turnip yellow virus (TuYV) and potato leafroll virus (PLRV) at 1.53-Å and 2.22-Å resolution, respectively. These adopt a two-domain arrangement with a unique interdigitated topology and form highly conserved dimers that are stabilized by a C-terminal peptide that is critical for proper folding. We demonstrate that the PLRVNRTD can act as an inhibitor of virus transmission and identifyNRTD mutant variants that are lethal to aphids. Sequence conservation argues that enamovirus and luteovirusNRTDs will follow the same structural blueprint, which affords a biological approach to block the spread of these agricultural pathogens in a generalizable manner.

     
    more » « less