Tuberculosis consistently causes more deaths worldwide annually than any other single pathogen, making new effective vaccines an urgent priority for global public health. Among potential adjuvants, STING-activating cyclic dinucleotides (CDNs) uniquely stimulate a cytosolic sensing pathway activated only by pathogens. Recently, we demonstrated that a CDN-adjuvanted protein subunit vaccine robustly protects against tuberculosis infection in mice. In this study, we delineate the mechanistic basis underlying the efficacy of CDN vaccines for tuberculosis. CDN vaccines elicit CD4 T cells that home to lung parenchyma and penetrate into macrophage lesions in the lung. Although CDNs, like other mucosal vaccines, generate B cell–containing lymphoid structures in the lungs, protection is independent of B cells. Mucosal vaccination with a CDN vaccine induces Th1, Th17, and Th1–Th17 cells, and protection is dependent upon both IL-17 and IFN-γ. Single-cell RNA sequencing experiments reveal that vaccination enhances a metabolic state in Th17 cells reflective of activated effector function and implicate expression of Tnfsf8 (CD153) in vaccine-induced protection. Finally, we demonstrate that simply eliciting Th17 cells via mucosal vaccination with any adjuvant is not sufficient for protection. A vaccine adjuvanted with deacylated monophosphoryl lipid A (MPLA) failed to protect against tuberculosis infection when delivered mucosally, despite eliciting Th17 cells, highlighting the unique promise of CDNs as adjuvants for tuberculosis vaccines.
- Award ID(s):
- 1936789
- PAR ID:
- 10416367
- Date Published:
- Journal Name:
- Frontiers in Molecular Biosciences
- Volume:
- 10
- ISSN:
- 2296-889X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide– and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide–adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.
-
Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these “dual-display” phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.more » « less
-
Abstract Traditional bolus vaccines often fail to sustain robust adaptive immune responses, typically requiring multiple booster shots for optimal efficacy. Additionally, these provide few opportunities to control the resulting subclasses of antibodies produced, which can mediate effector functions relevant to distinct disease settings. Here, it is found that three scaffold‐based vaccines, fabricated from poly(lactide‐
co ‐glycolide) (PLG), mesoporous silica rods, and alginate cryogels, induce robust, long‐term antibody responses to a model peptide antigen gonadotropin‐releasing hormone with single‐shot immunization. Compared to a bolus vaccine, PLG vaccines prolong germinal center formation and T follicular helper cell responses. Altering the presentation and release of the adjuvant (cytosine‐guanosine oligodeoxynucleotide, CpG) tunes the resulting IgG subclasses. Further, PLG vaccines elicit strong humoral responses against disease‐associated antigens HER2 peptide and pathogenicE. coli , protecting mice againstE. coli challenge more effectively than a bolus vaccine. Scaffold‐based vaccines may thus enable potent, durable and versatile humoral immune responses against disease. -
Abstract The development of a universal influenza vaccine is an ideal strategy to eliminate public health threats from influenza epidemics and pandemics. This ultimate goal is restricted by the low immunogenicity of conserved influenza epitopes. Layered protein nanoparticles composed of well‐designed conserved influenza structures have shown improved immunogenicity with new physical and biochemical features. Herein, structure‐stabilized influenza matrix protein 2 ectodomain (M2e) and M2e‐neuraminidase fusion (M2e‐NA) recombinant proteins are generated and M2e protein nanoparticles and double‐layered M2e‐NA protein nanoparticles are produced by ethanol desolvation and chemical crosslinking. Immunizations with these protein nanoparticles induce immune protection against different viruses of homologous and heterosubtypic NA in mice. Double‐layered M2e‐NA protein nanoparticles induce higher levels of humoral and cellular responses compared with their comprising protein mixture or M2e nanoparticles. Strong cytotoxic T cell responses are induced in the layered M2e‐NA protein nanoparticle groups. Antibody responses contribute to the heterosubtypic NA immune protection. The protective immunity is long lasting. These results demonstrate that double‐layered protein nanoparticles containing structure‐stabilized M2e and NA can be developed into a universal influenza vaccine or a synergistic component of such vaccines. Layered protein nanoparticles can be a general vaccine platform for different pathogens.