skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Importance of Standardizing Analytical Characterization Methodology for Improved Reliability of the Nanomedicine Literature
Abstract Understanding the interaction between biological structures and nanoscale technologies, dubbed the nano-bio interface, is required for successful development of safe and efficient nanomedicine products. The lack of a universal reporting system and decentralized methodologies for nanomaterial characterization have resulted in a low degree of reliability and reproducibility in the nanomedicine literature. As such, there is a strong need to establish a characterization system to support the reproducibility of nanoscience data particularly for studies seeking clinical translation. Here, we discuss the existing key standards for addressing robust characterization of nanomaterials based on their intended use in medical devices or as pharmaceuticals. We also discuss the challenges surrounding implementation of such standard protocols and their implication for translation of nanotechnology into clinical practice. We, however, emphasize that practical implementation of standard protocols in experimental laboratories requires long-term planning through integration of stakeholders including institutions and funding agencies.  more » « less
Award ID(s):
2034264
PAR ID:
10416498
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nano-Micro Letters
Volume:
14
Issue:
1
ISSN:
2311-6706
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Proteolysis-targeting chimera (PROTAC) has emerged as a groundbreaking therapeutic strategy by hijacking the endogenous ubiquitin proteasome system (UPS) for targeted protein degradation. These heterobifunctional molecules recruit E3 ligases to recognize the protein of interest (POI) and facilitate its ubiquitination, leading to subsequent proteasomal degradation. Compared to conventional protein inhibitors, PROTACs offer a broader range of target degradation and remain effective even against proteins with drug-resistant mutations. Moreover, PROTACs function in a catalytic manner to degrade POIs, allowing for significantly lower administration dosages. In recent years, PROTACs have shown great promise in cancer therapy due to their high efficiency and broad applicability. However, their clinical applications remain challenging due to low bioavailability, limited tumor-targeting ability, and potential side effects. Utilizing nanomedicine for the delivery of PROTACs offers a promising strategy to enhance bioavailability, improve tumor selectivity, and minimize toxicity, thereby advancing their applications in cancer treatment. In this review, we outline the fundamental design principles of PROTACs, summarize the latest progress of nanomedicines from molecular design to drug delivery for improved tumor treatment, introduce PROTAC-based combination therapies and emerging design strategies, and discuss current challenges and future prospects of PROTAC nanomedicines toward clinical translation. 
    more » « less
  2. Abstract Significant advances have been made in the development of nanoparticles for cancer treatment in recent years. Despite promising results in preclinical animal models, cancer nanomedicines often fail in clinical trials. This failure rate could be reduced by defining stringent criteria for testing and quality control during the design and development stages, and by performing carefully planned preclinical studies in relevant animal models. This article discusses best practices for the evaluation of nanomedicines in murine tumor models. First, a recommended set of experiments to perform is introduced, including discussion of the types of data to collect during these studies. This is followed by an outline of various tumor models and their clinical relevance. Next, different routes of nanoparticle administration are overviewed, followed by a summary of important controls to include in in vivo studies of nanomedicine. Finally, animal welfare considerations are discussed, and an overview of the steps involved in achieving US Food and Drug Administration approval after animal studies are completed is provided. Researchers should use this report as a guideline for effective preclinical evaluation of cancer nanomedicine. As the community adopts best practices for in vivo testing, the rate of clinical translation of cancer nanomedicines is likely to improve. 
    more » « less
  3. Abstract Over the past decade, three-dimensional (3D) bioprinting has made significant progress, transforming into a key innovation in tissue engineering. Despite the early strides, critical challenges remain in 3D bioprinting that must be addressed to accelerate clinical translation. In particular, there is still a long way to go before functionally-mature, clinically-relevant tissue equivalents are developed. Current limitations range from the sub-optimal bioink properties and degree of biomimicry of bioprintable architectures, to the lack of stem/progenitor cells for massive cell expansion, and fundamental knowledge regardingin vitroculturing conditions. In addition to these problems, the absence of guidelines and well-regulated international standards is creating uncertainty among the biofabrication community stakeholders regarding the reliable and scalable production processes. This review aims at exploring the latest developments in 3D bioprinting approaches, including various additive manufacturing techniques and their applications. A thorough discussion of common bioprinting techniques and recent progresses are compiled along with notable recent studies. Later we discuss the current challenges in clinical application of 3D bioprinting and the major bottlenecks in the commercialization of 3D bioprinted tissue equivalents, including the longevity of bioprinted organs, meeting biomechanical requirements, and the often underrated ethical and legal aspects. Amidst the progress of regulatory efforts for regenerative medicine, we also present an overview of the current regulatory concerns which should be taken into account to translate bioprinted tissues into clinical practice. At last, this review emphasizes future directions in 3D bioprinting that includes the transformative ideas such as bioprinting in microgravity and the integration of artificial intelligence. The study concludes with a discussion on the need for collaborative efforts in resolving the technical and regulatory constraints to improve the quality, reliability, and reproducibility of bioprinted tissue equivalents to ultimately accomplish their successful clinical implementation. 
    more » « less
  4. Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations. 
    more » « less
  5. Mestre, Julián; Wirth, Anthony (Ed.)
    In his 2018 paper, Herlihy introduced an atomic protocol for multi-party asset swaps across different blockchains. Practical implementation of this protocol is hampered by its intricacy and computational complexity, as it relies on elaborate smart contracts for asset transfers, and specifying the protocol’s steps on a given digraph requires solving an NP-hard problem of computing longest paths. Herlihy left open the question whether there is a simple and efficient protocol for cross-chain asset swaps in arbitrary digraphs. Addressing this, we study HTLC-based protocols, in which all asset transfers are implemented with standard hashed time-lock smart contracts (HTLCs). Our main contribution is a full characterization of swap digraphs that have such protocols, in terms of so-called reuniclus graphs. We give an atomic HTLC-based protocol for reuniclus graphs. Our protocol is simple and efficient. We then prove that non-reuniclus graphs do not have atomic HTLC-based swap protocols. 
    more » « less