skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ten simple rules for creating and sustaining antiracist graduate programs
In 2020, the combination of police killings of unarmed Black people, including George Floyd, Breonna Taylor, and Ahmaud Arbery, and the Coronavirus Disease 2019 (COVID-19) pandemic brought about public outrage over long-standing inequalities in society. The events of 2020 ignited global attention to systemic racism and racial inequalities, including the lack of diversity, equity, and inclusion in the academy and especially in science, technology, engineering, mathematics, and medicine (STEMM) fields. Racial and ethnic diversity in graduate programs in particular warrants special attention as graduate students of color report experiencing alarming rates of racism, discrimination, microaggressions, and other exclusionary behaviors. As part of the Graduate Dean’s Advisory Council on Diversity (GDACD) at the University of California Merced, the authors of this manuscript held a year-long discussion on these issues and ways to take meaningful action to address these persistent issues of injustices. We have outlined 10 rules to help graduate programs develop antiracist practices to promote racial and ethnic justice, equity, diversity, and inclusion (JEDI) in the academy. We focus on efforts to address systemic causes of the underrepresentation and attrition of students from minoritized communities. The 10 rules are developed to allow graduate groups to formulate and implement rules and policies to address root causes of underrepresentation of minoritized students in graduate education.  more » « less
Award ID(s):
1820875 1820886 1820876 1820895
PAR ID:
10416595
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Schwartz, Russell
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
10
ISSN:
1553-7358
Page Range / eLocation ID:
e1010516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The geosciences have the lowest racial and ethnic diversity of all STEM fields at all levels of higher education, and atmospheric science is emblematic of this discrepancy. Despite a growing awareness of the problem, Black, Indigenous, people of color, persons with disabilities, women, and LGBTQIA+ persons continue to be largely absent in academic programs and in the geoscience workforce. There is a desire and need for new approaches, new entry points, and higher levels of engagement to foster a diverse community of researchers, scholars, and practitioners in atmospheric science. One challenge among many is that diversity, equity, and inclusion efforts are often siloed from many aspects of the scientific process, technical training, and scientific community. We have worked toward bridging this gap through the development of a new atmospheric science course designed to break down traditional barriers for entry into diversity, equity, and inclusion engagement by graduate students, so they emerge better prepared to address issues of participation, representation, and inclusion. This article provides an overview of our new course, focused on social responsibility in atmospheric science. This course was piloted during Fall 2021 with the primary objective to educate and empower graduate students to be “diversity champions” in our field. We describe 1) the rationale for a course of this nature within a graduate program, 2) course design and content, 3) service-learning projects, 4) impact of the course on students, and 5) scalability to other atmospheric science graduate programs. 
    more » « less
  2. null (Ed.)
    Demographics of the science, technology, engineering, and mathematics (STEM) workforce and student body in the US and Europe continue to show severe underrepresentation of Black, Indigenous, and people of color (BIPOC). Among the documented causes of the persistent lack of diversity in STEM are bias, discrimination, and harassment of members of underrepresented minority groups (URMs). These issues persist due to continued marginalization, power imbalances, and lack of adequate policies against misconduct in academic and other scientific institutions. All scientists can play important roles in reversing this trend by shifting the culture of academic workplaces to intentionally implement equitable and inclusive policies, set norms for acceptable workplace conduct, and provide opportunities for mentorship and networking. As scientists are increasingly acknowledging the lack of racial and ethnic diversity in science, there is a need for clear direction on how to take antiracist action. Here we present 10 rules to help labs develop antiracists policies and action in an effort to promote racial and ethnic diversity, equity, and inclusion in science. 
    more » « less
  3. The longstanding underrepresentation and attrition of minoritized racial and ethnic groups and women in computing courses, majors, and careers continues to plague researchers, educators, and policymakers alike. Informed by Sue and colleague’s microaggression framework and Rowe's microaffirmation framework, this study theorizes identity-related factors that undermine and support efforts to increase the representation and meaningful participation of minoritized racial and ethnic groups and women in computing education. We conclude with implications for teaching practices to advance equity, inclusion, and justice in computing education. 
    more » « less
  4. BACKGROUND Previous work has identified the reality of structural constraints placed on engineering students from underrepresented gender, racial, or ethnic backgrounds, a process known as minoritization. Students from minoritized and marginalized backgrounds are often expected to overcome additional obstacles in order to be successful in engineering or to claim identity as an engineer. Such a cultural backdrop contributes to the experience of professional shame, which has not yet been characterized in the lived experiences of engineering students who identify with minoritized backgrounds. PURPOSE We contend that professional shame is a major factor in both creating and perpetuating cycles of marginalization that inhibit students from forming a professional identity as an engineer or succeeding in their academic program. Anchored in theoretical foundations of psychology and sociology, we define professional shame as a painful emotional experience that occurs when individuals perceive themselves to be wholly inadequate in relation to identity-relevant standards within a professional domain. In this paper, we examine the lived experiences of professional shame in undergraduate engineering students in the United States who identify with racial, gender, or ethnic backgrounds that are minoritized within the structural constraints of their engineering programs. METHODS To answer our research question: How do students from minoritized gender, racial or ethnic backgrounds experience professional shame within the context of engineering education? We conducted an interpretative methodological analysis (IPA). Specifically, we conducted semi-structured interviews with junior engineering majors (n = 7) from two predominantly white institutions (PWIs) who self-identified as being from a minoritized gender, racial, or ethnic background. We found IPA to be especially effective in answering our research question while affirming the nuances of the diversity found in our participants’ gender, racial and ethnic backgrounds. We carefully analyzed the interview transcripts, generating descriptive, linguistic, and contextual comments. These comments informed multiple emergent themes for each participant, which were subsequently integrated into robust themes that characterized the psychological experiences shared by all participants. SUMMARY OF FINDINGS Our findings are summarized in four robust, psychological themes. First, minoritized identities were salient in moments of professional shame. Second, in response to professional shame, students sought out confirmation of belonging within the engineering space. Third, their perception of engineering as an exceptionally difficult major that required exceptional smartness intensified the shame experience. And, finally, participants experienced a tension between wanting to adhere to engineering stereotypes and wanting to diverge from or alter engineering stereotypes. SIGNIFICANCE AND IMPLICATIONS Through examining participants’ experiences of shame and subsequent struggle to belong and claim identity as an engineer, we seek to address efforts in bolstering diversity, equity, and inclusion that may be hindered by the permeation of professional shame in the experience of minoritized students. We see these findings as critical in giving insight on how minoritization occurs and so that equity can become a systemic objective for everyone in the engineering community rather than the burden only on the shoulders of those who are marginalized by the community. 
    more » « less
  5. This descriptive qualitative study used racialized organizations (Ray, 2019) as a lens to examine how 27 faculty, administrators, and postdoctoral fellows in STEM departments at two institutions understood the problems that underlie negative racial climate, the strategies they used to improve racial climate, and the alignment between problems and solutions. Participants did not discuss racism and White supremacy as factors that contribute to negative racial climate. Instead, they indicated a weak STEM pipeline, and lack of faculty engagement created negative climate. Because participants did not attend to how racism and White supremacy fostered negative climate, their strategies (e.g., increased recruitment, committees, workshops) left systemic racism intact and (un)intentionally amplified labor for racially minoritized graduate students and faculty champions who often led change efforts with little support. These findings can help move departments away from intervention-centered models of change and toward more systemic approaches that contest how racialized organizations operate. 
    more » « less