skip to main content


Title: The impact of ice storms on mycorrhizal fungi varies by season and mycorrhizal type in a hardwood forest
Abstract

Extreme weather events, such as ice storms, are increasing and have potentially large impacts on forests, including belowground structures such as fine roots and mycorrhizal fungi. Many forest trees rely on the mutualistic relationship between mycorrhizal fungi and plants; a relationship that, when disrupted, can negatively impact tree net primary productivity. We took advantage of a large‐scale ice storm manipulation in the northeastern United States to test the hypothesis that increasing ice storm intensity and frequency would reduce ectomycorrhizal fungal root tips per unit root length and arbuscular mycorrhizal fungal structures per unit root length, hereafter colonization. We found that ice storm intensity reduced spring ectomycorrhizal fungal and arbuscular mycorrhizal fungal colonization. However, these patterns changed in the fall, where ice storm intensity still reduced ectomycorrhizal fungal root tips, but arbuscular mycorrhizal fungal colonization was higher in ice storm treatments than controls. The amount of ectomycorrhizal fungal root tips and arbuscular mycorrhizal fungal colonization differed seasonally: ectomycorrhizal fungal root tips were 1.7× higher in the spring than in the fall, while arbuscular mycorrhizal fungal colonization was 3× higher in the fall than in the spring. Our results indicate that mycorrhizal fungal colonization responses to ice storm severity vary temporally and by mycorrhizal fungal type. Further, arbuscular mycorrhizal fungi may recover from ice storms relatively quickly, potentially aiding forests in their recovery, whereas ice storms may have a long lasting impact on ectomycorrhizal fungi.

 
more » « less
NSF-PAR ID:
10416599
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
14
Issue:
5
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification. 
    more » « less
  2. Root cores were obtained in 2010 (pre-treatment) from two soil depths, 0-10 cm and 30-50 cm, in two MELNHE stands, C5 and C7, at Bartlett Experimental Forest. Arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) colonization and root length were quantified in each core to determine if AM or EM was more prevalent in shallow or deep soils. Detailed description and analyses of these data can be found in: Nash, J.M., Diggs, F.M. & Yanai, R.D. Length and colonization rates of roots associated with arbuscular or ectomycorrhizal fungi decline differentially with depth in two northern hardwood forests. Mycorrhiza 32, 213–219 (2022). https://doi.org/10.1007/s00572-022-01071-8 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. Abstract

    Most tree roots on Earth form a symbiosis with either ecto‐ or arbuscular mycorrhizal fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, and this may alter soil carbon balance, as differences in forest mycorrhizal associations are linked to differences in soil carbon pools. Combining nitrogen deposition data with continental‐scaleUSforest data, we show that nitrogen pollution is spatially associated with a decline in ectomycorrhizal vs. arbuscular mycorrhizal trees. Furthermore, nitrogen deposition has contrasting effects on arbuscular vs. ectomycorrhizal demographic processes, favoring arbuscular mycorrhizal trees at the expense of ectomycorrhizal trees, and is spatially correlated with reduced soil carbon stocks. This implies future changes in nitrogen deposition may alter the capacity of forests to sequester carbon and offset climate change via interactions with the forest microbiome.

     
    more » « less
  4. Druzhinina, Irina S. (Ed.)
    ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations. 
    more » « less
  5. Abstract

    Most terrestrial plants form mycorrhizas, but a number of agricultural plants, including the Brassicaceae, are non‐mycorrhizal. Brassicaceae can still be colonized by arbuscular mycorrhizal fungi (AMF), but species likeArabidopsis thalianaexperience growth reductions following AMF colonization at similar magnitude to that of fungal pathogen infections and lack key genes necessary for nutrient exchange.Arabidopsisalso produces specific secondary compounds via the modification of tryptophan, including indolic glucosinolates (IGs), which have anti‐fungal properties and may therefore be involved in reducing AMF colonization. This study therefore addressed whether the ability to produce IGs facilitates resistance to AMF colonization and growth suppression. We challenged with AMF inoculation transgenicArabidopsislines which produce no or enhanced IGs levels in comparison with the wild‐type. Arbuscular mycorrhizal fungal inoculation suppressed the development of IG‐removed plants, activated their pathogen‐response defenses, and enhanced AMF vesicle colonization of their root systems. Arbuscular mycorrhizal fungi had no detrimental effects on wild‐type or IG‐enhanced plants. Using BLAST to identify IG orthologs across 29 Brassicales, we also show that non‐mycorrhizal species possess orthologous proteins for IG biosynthesis toArabidopsiswhich AMF‐associated Brassicales lack. In conclusion, the IG production pathway appears to serve an important and previously unknown role in reducing AMF colonization inArabidopsisand may serve similar functions in non‐host Brassicales more broadly.

     
    more » « less