skip to main content


Title: Optimization of active surveillance strategies for heterogeneous patients with prostate cancer
Abstract

Prostate cancer (PCa) is common in American men with long latent periods, during which the disease is asymptomatic. Active surveillance is a monitoring strategy commonly used for patients diagnosed with low‐risk PCa who may harbor latent high‐risk PCa. The optimal monitoring strategy attempts to minimize the disutility of testing while ensuring that the patient is detected at the earliest time when the disease progresses. Unfortunately, guidelines for the active surveillance of PCa are often one‐size‐fits‐all strategies that ignore the heterogeneity among multiple patient types. In contrast, personalized strategies based on partially observable Markov decision process (POMDP) models are challenging to implement in practice given the large number of possible strategies that can be used. This article presents a two‐stage stochastic programming approach that selects a set of strategies for predefined cardinality based on patients' disease risks. The first‐stage decision variables include binary variables for the selection of periods at which to test patients in each strategy and the assignment of multiple patient types to strategies. The objective is to maximize a weighted reward function that considers the need for cancer detection, missed detection, and cost of monitoring patients. We discuss the structure and complexity of the model and reformulate a logic‐based Bender's decomposition formulation that can solve realistic instances to optimality. We present a case study for the active surveillance of PCa and show that our model results in strategies that vary in intensity according to patient disease risk. Finally, we show that our model can generate a small number of strategies that can significantly improve the existing “one‐size‐fits‐all” guideline strategies used in practice.

 
more » « less
PAR ID:
10416640
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Production and Operations Management
Volume:
31
Issue:
11
ISSN:
1059-1478
Format(s):
Medium: X Size: p. 4021-4037
Size(s):
p. 4021-4037
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Active surveillance (AS) is a suitable management option for newly diagnosed prostate cancer, which usually presents low to intermediate clinical risk. Patients enrolled in AS have their tumor monitored via longitudinal multiparametric MRI (mpMRI), PSA tests, and biopsies. Hence, treatment is prescribed when these tests identify progression to higher-risk prostate cancer. However, current AS protocols rely on detecting tumor progression through direct observation according to population-based monitoring strategies. This approach limits the design of patient-specific AS plans and may delay the detection of tumor progression. Here, we present a pilot study to address these issues by leveraging personalized computational predictions of prostate cancer growth. Our forecasts are obtained with a spatiotemporal biomechanistic model informed by patient-specific longitudinal mpMRI data (T2-weighted MRI and apparent diffusion coefficient maps from diffusion-weighted MRI). Our results show that our technology can represent and forecast the global tumor burden for individual patients, achieving concordance correlation coefficients from 0.93 to 0.99 across our cohort (n = 7). In addition, we identify a model-based biomarker of higher-risk prostate cancer: the mean proliferation activity of the tumor (P = 0.041). Using logistic regression, we construct a prostate cancer risk classifier based on this biomarker that achieves an area under the ROC curve of 0.83. We further show that coupling our tumor forecasts with this prostate cancer risk classifier enables the early identification of prostate cancer progression to higher-risk disease by more than 1 year. Thus, we posit that our predictive technology constitutes a promising clinical decision-making tool to design personalized AS plans for patients with prostate cancer.

    Significance:

    Personalization of a biomechanistic model of prostate cancer with mpMRI data enables the prediction of tumor progression, thereby showing promise to guide clinical decision-making during AS for each individual patient.

     
    more » « less
  2. Abstract

    This study aimed to estimate the rates of biopsy undersampling and progression for four prostate cancer (PCa) active surveillance (AS) cohorts within the Movember Foundation's Global Action Plan Prostate Cancer Active Surveillance (GAP3) consortium. We used a hidden Markov model (HMM) to estimate factors that define PCa dynamics for men on AS including biopsy under‐sampling and progression that are implied by longitudinal data in four large cohorts included in the GAP3 database. The HMM was subsequently used as the basis for a simulation model to evaluate the biopsy strategies previously proposed for each of these cohorts. For the four AS cohorts, the estimated annual progression rate was between 6%–13%. The estimated probability of a biopsy successfully sampling undiagnosed non‐favorable risk cancer (biopsy sensitivity) was between 71% and 80%. In the simulation study of patients diagnosed with favorable risk cancer at age 50, the mean number of biopsies performed before age 75 was between 4.11 and 12.60, depending on the biopsy strategy. The mean delay time to detection of non‐favorable risk cancer was between 0.38 and 2.17 years. Biopsy undersampling and progression varied considerably across study cohorts. There was no single best biopsy protocol that is optimal for all cohorts, because of the variation in biopsy under‐sampling error and annual progression rates across cohorts. All strategies demonstrated diminishing benefits from additional biopsies.

     
    more » « less
  3. Patient management is not based on a single decision. Rather, it is dynamic: based on a sequence of decisions, with therapeutic adjustments made over time. Adjustments are personalized: tailored to individual patients as new information becomes available. However, strategies allowing for such adjustments are infrequently studied. Traditional antibiotic trials are often nonpragmatic, comparing drugs for definitive therapy when drug susceptibilities are known. COMparing Personalized Antibiotic StrategieS (COMPASS) is a trial design that compares strategies consistent with clinical practice. Strategies are decision rules that guide empiric and definitive therapy decisions. Sequential, multiple-assignment, randomized (SMART) COMPASS allows evaluation when there are multiple, definitive therapy options. SMART COMPASS is pragmatic, mirroring clinical, antibiotic-treatment decision-making and addressing the most relevant issue for treating patients: identification of the patient-management strategy that optimizes the ultimate patient outcomes. SMART COMPASS is valuable in the setting of antibiotic resistance, when therapeutic adjustments may be necessary due to resistance. 
    more » « less
  4. Abstract

    Hepatocellular Carcinoma (HCC) is one of the most lethal cancers with a high mortality and recurrence rate. Circulating tumor cell (CTC) detection offers various opportunities to advance early detection and monitoring of HCC tumors which is crucial for improving patient outcome. We developed and optimized a novel Labyrinth microfluidic device to efficiently isolate CTCs from peripheral blood of HCC patients. CTCs were identified in 88.1% of the HCC patients over different tumor stages. The CTC positivity rate was significantly higher in patients with more advanced HCC stages. In addition, 71.4% of the HCC patients demonstrated CTCs positive for cancer stem cell marker, CD44, suggesting that the major population of CTCs could possess stemness properties to facilitate tumor cell survival and dissemination. Furthermore, 55% of the patients had the presence of circulating tumor microemboli (CTM) which also correlated with advanced HCC stage, indicating the association of CTM with tumor progression. Our results show effective CTC capture from HCC patients, presenting a new method for future noninvasive screening and surveillance strategies. Importantly, the detection of CTCs with stemness markers and CTM provides unique insights into the biology of CTCs and their mechanisms influencing metastasis, recurrence and therapeutic resistance.

     
    more » « less
  5. Over the past several decades in the United States, incidence of pancreatic cancer (PCa) has increased, with the 5-year survival rate remaining extremely low at 10.8%. Typically, PCa is diagnosed at an advanced stage, with the consequence that there is more tumor heterogeneity and increased probability that more cells are resistant to treatments. Risk factors for PCa can serve as a way to select a high-risk population and develop biomarkers to improve early detection and treatment. We focus on blood-based methylation as an approach to identify a marker set that can be obtained in a minimally invasive way (through peripheral blood) and could be applied to a high-risk subpopulation [those with recent onset type 2 diabetes (DM)]. Blood samples were collected from 30 patients, 15 had been diagnosed with PCa and 15 had been diagnosed with recent onset DM. HumanMethylationEPIC Beadchip (Illumina, CA, United States) was used to quantify methylation of approximately 850,000 methylation sites across the genome and to analyze methylation markers associated with PCa or DM or both. Exploratory analysis conducted to propose importance of top CpG (5′—C—phosphate—G—3′) methylation site associated genes and visualized using boxplots. A methylation-based age predictor was also investigated for ability to distinguish disease groups from controls. No methylation markers were observed to be significantly associated with PCa or new onset diabetes compared with control the respective control groups. In our exploratory analysis, one methylation marker, CpG04969764, found in the Laminin Subunit Alpha 5 ( LAMA5 ) gene region was observed in both PCa and DM Top 100 methylation marker sets. Modification of LAMA5 methylation or LAMA5 gene function may be a way to distinguish those recent DM cases with and without PCa, however, additional studies with larger sample sizes and different study types (e.g., cohort) will be needed to test this hypothesis. 
    more » « less