skip to main content

Title: The marionette mechanism of domain–domain communication in the antagonist, agonist, and coactivator responses of the estrogen receptor
The human estrogen receptor α (hER α ) is involved in the regulation of growth, development, and tissue homeostasis. Agonists that bind to the receptor’s ligand-binding domain (LBD) lead to recruitment of coactivators and the enhancement of gene expression. In contrast, antagonists bind to the LBD and block the binding of coactivators thus decreasing gene expressions. In this work, we carry out simulations using the AWSEM (Associative memory, Water mediated, Structure and Energy Model)-Suite force field along with the 3SPN.2C force field for DNA to predict the structure of hER α and study its dynamics when binding to DNA and coactivators. Using simulations of antagonist-bound hER α and agonist-bound hER α by themselves and also along with bound DNA and coactivators, principal component analyses and free energy landscape analyses capture the pathway of domain–domain communication for agonist-bound hER α . This communication is mediated through the hinge domains that are ordinarily intrinsically disordered. These disordered segments manipulate the hinge domains much like the strings of a marionette as they twist in different ways when antagonists or agonists are bound to the ligand-binding domain.  more » « less
Award ID(s):
2019745 2014141
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As the core component of the adherens junction in cell–cell adhesion, the cadherin–catenin complex transduces mechanical tension between neighboring cells. Structural studies have shown that the cadherin–catenin complex exists as an ensemble of flexible conformations, with the actin-binding domain (ABD) of α-catenin adopting a variety of configurations. Here, we have determined the nanoscale protein domain dynamics of the cadherin–catenin complex using neutron spin echo spectroscopy (NSE), selective deuteration, and theoretical physics analyses. NSE reveals that, in the cadherin–catenin complex, the motion of the entire ABD becomes activated on nanosecond to submicrosecond timescales. By contrast, in the α-catenin homodimer, only the smaller disordered C-terminal tail of ABD is moving. Molecular dynamics (MD) simulations also show increased mobility of ABD in the cadherin–catenin complex, compared to the α-catenin homodimer. Biased MD simulations further reveal that the applied external forces promote the transition of ABD in the cadherin–catenin complex from an ensemble of diverse conformational states to specific states that resemble the actin-bound structure. The activated motion and an ensemble of flexible configurations of the mechanosensory ABD suggest the formation of an entropic trap in the cadherin–catenin complex, serving as negative allosteric regulation that impedes the complex from binding to actin under zero force. Mechanical tension facilitates the reduction in dynamics and narrows the conformational ensemble of ABD to specific configurations that are well suited to bind F-actin. Our results provide a protein dynamics and entropic explanation for the observed force-sensitive binding behavior of a mechanosensitive protein complex.

    more » « less
  2. Abstract

    Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacteriumSinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl‐accepting chemotaxis proteins (MCPs).S. melilotipossesses eight chemoreceptors to mediate chemotaxis. Six of these receptors are transmembrane proteins with periplasmic ligand‐binding domains (LBDs). The specific functions of McpW and McpZ are still unknown. Here, we report the crystal structure of the periplasmic domain of McpZ (McpZPD) at 2.7 Å resolution. McpZPD assumes a novel fold consisting of three concatenated four‐helix bundle modules. Through phylogenetic analyses, we discovered that this helical tri‐modular domain fold arose within the Rhizobiaceae family and is still evolving rapidly. The structure, offering a rare view of a ligand‐free dimeric MCP‐LBD, reveals a novel dimerization interface. Molecular dynamics calculations suggest ligand binding will induce conformational changes that result in large horizontal helix movements within the membrane‐proximal domains of the McpZPD dimer that are accompanied by a 5 Å vertical shift of the terminal helix toward the inner cell membrane. These results suggest a mechanism of transmembrane signaling for this family of MCPs that entails both piston‐type and scissoring movements. The predicted movements terminate in a conformation that closely mirrors those observed in related ligand‐bound MCP‐LBDs.

    more » « less
  3. Abstract

    Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors’ TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2–4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.

    more » « less
  4. null (Ed.)
    Cells adapt and respond to changes by regulating the activity of their genes. To turn genes on or off, they use a family of proteins called transcription factors. Transcription factors influence specific but overlapping groups of genes, so that each gene is controlled by several transcription factors that act together like a dimmer switch to regulate gene activity. The presence of transcription factors attracts proteins such as the Mediator complex, which activates genes by gathering the protein machines that read the genes. The more transcription factors are found near a specific gene, the more strongly they attract Mediator and the more active the gene is. A specific region on the transcription factor called the activation domain is necessary for this process. The biochemical sequences of these domains vary greatly between species, yet activation domains from, for example, yeast and human proteins are often interchangeable. To understand why this is the case, Sanborn et al. analyzed the genome of baker’s yeast and identified 150 activation domains, each very different in sequence. Three-quarters of them bound to a subunit of the Mediator complex called Med15. Sanborn et al. then developed a machine learning algorithm to predict activation domains in both yeast and humans. This algorithm also showed that negatively charged and greasy regions on the activation domains were essential to be activated by the Mediator complex. Further analyses revealed that activation domains used different poses to bind multiple sites on Med15, a behavior known as ‘fuzzy’ binding. This creates a high overall affinity even though the binding strength at each individual site is low, enabling the protein complexes to remain dynamic. These weak interactions together permit fine control over the activity of several genes, allowing cells to respond quickly and precisely to many changes. The computer algorithm used here provides a new way to identify activation domains across species and could improve our understanding of how living things grow, adapt and evolve. It could also give new insights into mechanisms of disease, particularly cancer, where transcription factors are often faulty. 
    more » « less
  5. null (Ed.)
    Activation of the CB2 receptor has been shown to have anti-inflammatory and antinociceptive effects without causing psychoactive effects. Previously, we reported that the compound ethyl 2(2-(N-(2,3-dimethylphenyl) phenylsulfonamido)acetamido)benzoate (ABK5) is a CB2 subtype selective agonist with anti-inflammatory and antinociceptive effects. In the present study, we tested four ABK5 derivatives, ABK5-1, ABK5-2, ABK5-5, and ABK5-6, to analyze the structure of ABK5 to obtain CB2-selective agonists with higher affinity and efficacy. Affinity, subtype selectivity, and G-protein coupling were determined by radioligand binding assays. Selected compounds were then subjected to evaluation of anti-inflammatory effects using two different cell lines, Jurkat (ABK5-1 and 5-2) and BV-2 cells (ABK5-1), which are models of T cells and microglia, respectively. ABK5-1, ABK5-2, and ABK5-6 had comparable CB2 binding affinity with ABK5 (and stimulated G-protein coupling), while only ABK5-1 and ABK5-2 maintained CB2-subtype selectivity. ABK5-5 did not bind CB2 in the detectable range. RT-PCR and ELISA analysis showed that the two compounds also inhibit IL-2 and TNF-α production, and they were more efficacious than ABK5 in inhibiting TNF-α production. CXCL-12 mediated chemotaxis was also evaluated by the transwell migration assay, and both ABK5-1 and ABK5-2 inhibited chemotaxis with a stronger effect observed in ABK5-1. In the microglia cell line BV-2, ABK5-1 inhibited IL-1β and IL-6 production, which suggests this compound has anti-inflammatory effects through targeting multiple immune cells, and may be a candidate for treatment of inflammation. 
    more » « less