skip to main content


Title: Impact of acculturation on math achievement in community college students
Objective We live in an increasingly multicultural society which is reflected in the student population. In the community college (CC) setting, students from underrepresented groups are over-represented in remedial math courses and are less likely to complete the sequence. The extant literature suggests higher levels of acculturation, both cultural adoption and cultural maintenance, support academic success. Working memory (WM) is a well-known domain-general predictor of mathematical development and has been shown to relate to math achievement r = .38. Given this moderate relation, additional predictors of math achievement warrant investigation. In the present study, we investigated the potential moderational role of acculturation (cultural adoption and maintenance), on the WM-math relation in a diverse group of CC students (n = 94). Math was assessed both by a standardized measure of math computation and a measure of “everyday math” word problems including medical and financial management. We expected that higher levels of acculturation (adoption and maintenance) would decreasing WM load (via cognitive load) and aid math performance. At higher levels of acculturation, the WM-math relation was hypothesized approximate meta analytic findings, r = .38. Alternatively, at low levels of acculturation, the WM-math correlation was anticipated to be attenuated due to the added variability in culture and the negative impact low acculturation levels have on WM by increasing cognitive load. Participants and Methods A diverse sample of CC students (ages 18-25) who were enrolled in a math course were included. Participants completed an online survey covering demographic and cultural domains, then completed an in-person cognitive testing session to assess language abilities, WM, and math ability. Bivariate correlations and regression based moderation analyses were used. Post-hoc analyses were conducted to assess for three-way interactions with baseline verbal or math abilities. Results WM-math correlations averaged r = .38. Acculturation did not significantly relate to either outcome variable. Neither cultural adoption (computations: F=1.68, p =.199; word problems: F=.42, p =.521 ) nor cultural maintenance (computations: F=.83, p = .364; word problems: F=.36, p = .550) moderated the WM-math relations. Post-hoc analyses revealed significant three-way interactions between cultural adoption and math computation across different levels of vocabulary (F=4.66, p = .034) and math abilities (F= 6.16 p = .015). Conclusion The hypothesized moderational role of acculturation on the WM-math relation was not supported. Post-hoc analyses, however, revealed that the cultural adoption-math relationship varied across different levels of vocabulary and math abilities, although not in the direction anticipated. Finding suggest complex relationships between the WM, acculturation, and math such that acculturation does impact math performance when either vocabulary or math abilities are strong. At low levels of math or vocabulary, students’ WM may already be overtaxed, such that higher acculturation levels cannot benefit the student. Whereas when baseline abilities are average/high, increased cultural adoption can benefit the student by potentially decreasing cognitive load and freeing additional WM capacity which can be applied to the task. Findings could identify patterns of students at risk for math failure and inform future intervention/policy development to address their needs and support success.  more » « less
Award ID(s):
1760760
NSF-PAR ID:
10416747
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ineternational Neuropsychological Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: 100 words Jurors are increasingly exposed to scientific information in the courtroom. To determine whether providing jurors with gist information would assist in their ability to make well-informed decisions, the present experiment utilized a Fuzzy Trace Theory-inspired intervention and tested it against traditional legal safeguards (i.e., judge instructions) by varying the scientific quality of the evidence. The results indicate that jurors who viewed high quality evidence rated the scientific evidence significantly higher than those who viewed low quality evidence, but were unable to moderate the credibility of the expert witness and apply damages appropriately resulting in poor calibration. Summary: <1000 words Jurors and juries are increasingly exposed to scientific information in the courtroom and it remains unclear when they will base their decisions on a reasonable understanding of the relevant scientific information. Without such knowledge, the ability of jurors and juries to make well-informed decisions may be at risk, increasing chances of unjust outcomes (e.g., false convictions in criminal cases). Therefore, there is a critical need to understand conditions that affect jurors’ and juries’ sensitivity to the qualities of scientific information and to identify safeguards that can assist with scientific calibration in the courtroom. The current project addresses these issues with an ecologically valid experimental paradigm, making it possible to assess causal effects of evidence quality and safeguards as well as the role of a host of individual difference variables that may affect perceptions of testimony by scientific experts as well as liability in a civil case. Our main goal was to develop a simple, theoretically grounded tool to enable triers of fact (individual jurors) with a range of scientific reasoning abilities to appropriately weigh scientific evidence in court. We did so by testing a Fuzzy Trace Theory-inspired intervention in court, and testing it against traditional legal safeguards. Appropriate use of scientific evidence reflects good calibration – which we define as being influenced more by strong scientific information than by weak scientific information. Inappropriate use reflects poor calibration – defined as relative insensitivity to the strength of scientific information. Fuzzy Trace Theory (Reyna & Brainerd, 1995) predicts that techniques for improving calibration can come from presentation of easy-to-interpret, bottom-line “gist” of the information. Our central hypothesis was that laypeople’s appropriate use of scientific information would be moderated both by external situational conditions (e.g., quality of the scientific information itself, a decision aid designed to convey clearly the “gist” of the information) and individual differences among people (e.g., scientific reasoning skills, cognitive reflection tendencies, numeracy, need for cognition, attitudes toward and trust in science). Identifying factors that promote jurors’ appropriate understanding of and reliance on scientific information will contribute to general theories of reasoning based on scientific evidence, while also providing an evidence-based framework for improving the courts’ use of scientific information. All hypotheses were preregistered on the Open Science Framework. Method Participants completed six questionnaires (counterbalanced): Need for Cognition Scale (NCS; 18 items), Cognitive Reflection Test (CRT; 7 items), Abbreviated Numeracy Scale (ABS; 6 items), Scientific Reasoning Scale (SRS; 11 items), Trust in Science (TIS; 29 items), and Attitudes towards Science (ATS; 7 items). Participants then viewed a video depicting a civil trial in which the defendant sought damages from the plaintiff for injuries caused by a fall. The defendant (bar patron) alleged that the plaintiff (bartender) pushed him, causing him to fall and hit his head on the hard floor. Participants were informed at the outset that the defendant was liable; therefore, their task was to determine if the plaintiff should be compensated. Participants were randomly assigned to 1 of 6 experimental conditions: 2 (quality of scientific evidence: high vs. low) x 3 (safeguard to improve calibration: gist information, no-gist information [control], jury instructions). An expert witness (neuroscientist) hired by the court testified regarding the scientific strength of fMRI data (high [90 to 10 signal-to-noise ratio] vs. low [50 to 50 signal-to-noise ratio]) and gist or no-gist information both verbally (i.e., fairly high/about average) and visually (i.e., a graph). After viewing the video, participants were asked if they would like to award damages. If they indicated yes, they were asked to enter a dollar amount. Participants then completed the Positive and Negative Affect Schedule-Modified Short Form (PANAS-MSF; 16 items), expert Witness Credibility Scale (WCS; 20 items), Witness Credibility and Influence on damages for each witness, manipulation check questions, Understanding Scientific Testimony (UST; 10 items), and 3 additional measures were collected, but are beyond the scope of the current investigation. Finally, participants completed demographic questions, including questions about their scientific background and experience. The study was completed via Qualtrics, with participation from students (online vs. in-lab), MTurkers, and non-student community members. After removing those who failed attention check questions, 469 participants remained (243 men, 224 women, 2 did not specify gender) from a variety of racial and ethnic backgrounds (70.2% White, non-Hispanic). Results and Discussion There were three primary outcomes: quality of the scientific evidence, expert credibility (WCS), and damages. During initial analyses, each dependent variable was submitted to a separate 3 Gist Safeguard (safeguard, no safeguard, judge instructions) x 2 Scientific Quality (high, low) Analysis of Variance (ANOVA). Consistent with hypotheses, there was a significant main effect of scientific quality on strength of evidence, F(1, 463)=5.099, p=.024; participants who viewed the high quality evidence rated the scientific evidence significantly higher (M= 7.44) than those who viewed the low quality evidence (M=7.06). There were no significant main effects or interactions for witness credibility, indicating that the expert that provided scientific testimony was seen as equally credible regardless of scientific quality or gist safeguard. Finally, for damages, consistent with hypotheses, there was a marginally significant interaction between Gist Safeguard and Scientific Quality, F(2, 273)=2.916, p=.056. However, post hoc t-tests revealed significantly higher damages were awarded for low (M=11.50) versus high (M=10.51) scientific quality evidence F(1, 273)=3.955, p=.048 in the no gist with judge instructions safeguard condition, which was contrary to hypotheses. The data suggest that the judge instructions alone are reversing the pattern, though nonsignificant, those who received the no gist without judge instructions safeguard awarded higher damages in the high (M=11.34) versus low (M=10.84) scientific quality evidence conditions F(1, 273)=1.059, p=.30. Together, these provide promising initial results indicating that participants were able to effectively differentiate between high and low scientific quality of evidence, though inappropriately utilized the scientific evidence through their inability to discern expert credibility and apply damages, resulting in poor calibration. These results will provide the basis for more sophisticated analyses including higher order interactions with individual differences (e.g., need for cognition) as well as tests of mediation using path analyses. [References omitted but available by request] Learning Objective: Participants will be able to determine whether providing jurors with gist information would assist in their ability to award damages in a civil trial. 
    more » « less
  2. Abstract

    Research points to neurofunctional differences underlying fluent speech between stutterers and non-stutterers. Considerably less work has focused on processes that underlie stuttered vs. fluent speech. Additionally, most of this research has focused on speech motor processes despite contributions from cognitive processes prior to the onset of stuttered speech. We used MEG to test the hypothesis that reactive inhibitory control is triggered prior to stuttered speech. Twenty-nine stutterers completed a delayed-response task that featured a cue (prior to a go cue) signaling the imminent requirement to produce a word that was either stuttered or fluent. Consistent with our hypothesis, we observed increased beta power likely emanating from the R-preSMA—an area implicated in reactive inhibitory control—in response to the cue preceding stuttered vs. fluent productions. Beta power differences between stuttered and fluent trials correlated with stuttering severity and participants' percentage of trials stuttered increased exponentially with beta power in the R-preSMA. Trial-by-trial beta power modulations in the R-preSMA following the cue predicted whether a trial would be stuttered or fluent. Stuttered trials were also associated with delayed speech onset suggesting an overall slowing or freezing of the speech motor system that may be a consequence of inhibitory control. Post-hoc analyses revealed that independently-generated anticipated words were associated with greater beta power and more stuttering than researcher-assisted anticipated words, pointing to a relationship between self-perceived likelihood of stuttering (i.e., anticipation) and inhibitory control. This work offers a neurocognitive account of stuttering by characterizing cognitive processes that precede overt stuttering events.

     
    more » « less
  3. null (Ed.)
    The goal was to identify the domain-general cognitive abilities and academic attitudes that are common and unique to reading and mathematics learning difficulties that in turn will have implications for intervention development. Across seventh and eighth grade, 315 (155 boys) adolescents (M age = 12.75 years) were administered intelligence, verbal short-term and working memory, and visuospatial memory, attention, and ability measures, along with measures of English and mathematics attitudes and mathematics anxiety. Teachers reported on students’ in-class attentive behavior. A combination of Bayesian and multi-level models revealed that intelligence and in-class attentive behavior were common predictors of reading accuracy, reading fluency, and mathematics achievement. Verbal short-term memory was more critical for reading accuracy and fluency, whereas spatial ability and mathematics self-efficacy were more critical for mathematics achievement. The combination of intelligence and in-class attentive behavior discriminated typically-achieving students from students with comorbid (D = 2.44) or mathematics (D = 1.59) learning difficulties, whereas intelligence, visuospatial attention, and verbal short-term memory discriminated typically-achieving students from students with reading disability (D = 1.08). The combination of in-class attentive behavior, verbal short-term memory, and mathematics self-efficacy discriminated students with mathematics difficulties from their peers with reading difficulties (D = 1.16). Given the consistent importance of in-class attentive behavior, we conducted post hoc follow-up analyses. The results suggested that students with poor in-class attentive behavior were disengaging from academic learning which in turn contributed to their risk of learning difficulties. 
    more » « less
  4. Abstract

    Children's early math skills have been hailed as a powerful predictor of academic success. Disparities in socioeconomic context, however, also have dramatic consequences on children's learning. It is therefore critical to investigate both of these distinct contributors in order to better understand the early foundations of children's academic outcomes. This study tests an integrated model of children's developing math ability so as to (1) identify the specific skills and abilities most clearly linked to early math achievement and (2) measure the influence of children's socioeconomic context on each of these skills. We first evaluated the early vocabulary, number word knowledge (knower level), and Approximate Number System (ANS) acuity of a diverse group of preschoolers. Then, approximately 1 year later as they entered Kindergarten, we administered a test of early math achievement. We find that children's early language (general vocabulary and number word knowledge) fully mediates the relationship between parent education and math ability. Additionally, number word knowledge mediates the relationship betweenANSacuity and early math. We argue that increased focus on number word knowledge, as well as general vocabulary, may help to minimize disparities in math ability as children enter kindergarten. We also highlight the role of parent education on children's learning and note that this may be an important locus for intervention.

     
    more » « less
  5. Context: Within higher education, reports show that approximately 6% of Australian college students and 13% of U.S. college students have identified as having a disability to their institution of higher education. Findings from research in K-12 education report that students with disabilities often leave secondary school with lower college aspirations and are discouraged from taking engineering-related courses. Those who do enrol are often not supported effectively and must navigate physical, cultural, and bureaucratic university systems in order to access resources necessary for success in school and work. This lack of support is problematic as cognitive, developmental, mental health, and physical disabilities can markedly shape the ways in which students perceive and experience school, form professional identities, and move into the engineering workforce. However, little work has explored professional identity development within this population, specifically within a single engineering discipline such as civil engineering. Purpose: To move beyond tolerance and actively embrace students with diverse perspectives in engineering higher education, the purpose of this study is to understand the ways in which undergraduate students who experience disability form professional identities as civil engineers. Approach: Drawing on the sensitizing concepts of identity saliency, intersectionality, and social identity theory, we utilize Constructivist Grounded Theory (GT) to explore the influences of and interactions among students' disability and professional identities within civil engineering. Semi-structured interviews, each lasting approximately 90 minutes, were conducted with undergraduate civil engineering students who identified as having a disability. Here, we present our findings from the initial and focused coding phases of our GT analysis. Results: Our analyses revealed two themes warranting further exploration: 1) varying levels of disability identity saliency in relation to the development of a professional identity; and 2) conflicting colloquial and individual conceptualizations of disability. Overall, it has been observed that students' experiences with and perceptions of these themes tend to vary based on characteristics of an experienced disability. Conclusions: Students with disabilities experience college - and form professional identities - in a variety of ways. While further research is required to delineate how disability shapes college students' professional identities and vice versa, gaining an understanding of student experiences can yield insights to help us create educational spaces that better allow students with disabilities to flourish in engineering and make engineering education more inclusive. 
    more » « less